def run_example(with_plots=True): r""" An example for IDA with scaled preconditioned GMRES method as a special linear solver. Note, how the operation Jacobian times vector is provided. ODE: .. math:: \dot y_1 - y_2 &= 0\\ \dot y_2 -9.82 &= 0 on return: - :dfn:`imp_mod` problem instance - :dfn:`imp_sim` solver instance """ #Defines the residual def res(t, y, yd): res_0 = yd[0] - y[1] res_1 = yd[1] + 9.82 return N.array([res_0, res_1]) #Defines the Jacobian*vector product def jacv(t, y, yd, res, v, c): jy = N.array([[0, -1.], [0, 0]]) jyd = N.array([[1, 0.], [0, 1]]) j = jy + c * jyd return N.dot(j, v) #Initial conditions y0 = [1.0, 0.0] yd0 = [0.0, -9.82] #Defines an Assimulo implicit problem imp_mod = Implicit_Problem( res, y0, yd0, name='Example using the Jacobian Vector product') imp_mod.jacv = jacv #Sets the jacobian imp_sim = IDA(imp_mod) #Create an IDA solver instance #Set the parameters imp_sim.atol = 1e-5 #Default 1e-6 imp_sim.rtol = 1e-5 #Default 1e-6 imp_sim.linear_solver = 'SPGMR' #Change linear solver #imp_sim.options["usejac"] = False #Simulate t, y, yd = imp_sim.simulate( 5, 1000) #Simulate 5 seconds with 1000 communication points #Basic tests nose.tools.assert_almost_equal(y[-1][0], -121.75000000, 4) nose.tools.assert_almost_equal(y[-1][1], -49.100000000) #Plot if with_plots: P.plot(t, y) P.xlabel('Time') P.ylabel('State') P.title(imp_mod.name) P.show() return imp_mod, imp_sim
def DAE_integration_assimulo(self, **kwargs): """ Perform time integration for DAEs with the assimulo package """ assert self.set_time_setting == 1, 'Time discretization must be specified first' if self.tclose > 0: close = True else: close = False # Control vector self.U = interpolate(self.boundary_cntrl_space, self.Vb).vector()[self.bndr_i_b] if self.discontinous_boundary_values == 1: self.U[self.Corner_indices] = self.U[self.Corner_indices]/2 # Definition of the sparse solver for the DAE res function to # be defined next M should be invertible !! my_solver = factorized(csc_matrix(self.M)) rhs = self.my_mult(self.J, self.my_mult(self.Q,self.A0)) + self.my_mult(self.Bext,self.U* self.boundary_cntrl_time(0.,self.tclose)) self.AD0 = my_solver(rhs) # Definition of the rhs function required in assimulo def res(t,y,yd): """ Definition of the residual function required in the DAE part of assimulo """ if close: if t < self.tclose: z = self.my_mult(self.M,yd) - self.my_mult(self.J, self.my_mult(self.Q,y)) - self.my_mult(self.Bext,self.U* self.boundary_cntrl_time(t,self.tclose)) else: z = self.my_mult(self.M,yd) - self.my_mult((self.J - self.R), self.my_mult(self.Q,y)) else: z = self.my_mult(self.M,yd) - self.my_mult(self.J, self.my_mult(self.Q,y)) - self.my_mult(self.Bext,self.U* self.boundary_cntrl_time(t,self.tclose)) return z # Definition of the jacobian function required in assimulo def jac(c,t,y,yd): """ Definition of the Jacobian matrix required in the DAE part of assimulo """ Matrix = csr_matrix(self.my_mult(self.J,self.Q)) if close and t > self.tclose: Matrix = csr_matrix(self.my_mult(self.J - self.R, self.Q)) return c*csr_matrix(self.M) - Matrix # Definition of the jacobian matrix vector function required in assimulo def jacv(t,y,yd,res,v,c): """ Jacobian matrix-vector product required in the DAE part of assimulo """ w = self.my_mult(self.Q, v) z = self.my_mult(self.J, w) if close and t > self.tclose: z -= self.my_mult(self.R, w) return c*self.my_mult(self.M,v) - z print('DAE Integration using assimulo built-in functions:') model = Implicit_Problem(res,self.A0,self.AD0,self.tinit) model.jacv = jacv #sim = Radau5DAE(model,**kwargs) # # IDA method from Assimulo # sim = IDA(model,**kwargs) sim.algvar = [1 for i in range(self.M.shape[0])] sim.atol = 1.e-6 sim.rtol = 1.e-6 sim.report_continuously = True ncp = self.Nt sim.usejac = True sim.suppress_alg = True sim.inith = self.dt sim.maxord = 5 #sim.linear_solver = 'SPGMR' time_span, DAE_y, DAE_yd = sim.simulate(self.tfinal,ncp) #print(sim.get_options()) print(sim.print_statistics()) A_dae = DAE_y.transpose() # Hamiltonian self.Nt = A_dae.shape[1] self.tspan = np.array(time_span) Ham_dae = np.zeros(self.Nt) for k in range(self.Nt): #Ham_dae[k] = 1/2 * A_dae[:,k] @ self.M @ self.Q @ A_dae[:,k] Ham_dae[k] = 1/2 * self.my_mult(A_dae[:,k].T, \ self.my_mult(self.M, self.my_mult(self.Q, A_dae[:,k]))) # Get q variables Aq_dae = A_dae[:self.Nq,:] # Get p variables Ap_dae = A_dae[self.Nq:,:] # Get Deformation Rho = np.zeros(self.Np) for i in range(self.Np): Rho[i] = self.rho(self.coord_p[i]) W_dae = np.zeros((self.Np,self.Nt)) theta = .5 for k in range(self.Nt-1): W_dae[:,k+1] = W_dae[:,k] + self.dt * 1/Rho[:] * ( theta * Ap_dae[:,k+1] + (1-theta) * Ap_dae[:,k] ) self.Ham_dae = Ham_dae return Aq_dae, Ap_dae, Ham_dae, W_dae, np.array(time_span)