def setUp(self): """ This sets up the test case. """ #Define the residual def f(t,y,yd): eps = 1.e-6 my = 1./eps yd_0 = y[1] yd_1 = my*((1.-y[0]**2)*y[1]-y[0]) res_0 = yd[0]-yd_0 res_1 = yd[1]-yd_1 return N.array([res_0,res_1]) y0 = [2.0,-0.6] #Initial conditions yd0 = [-.6,-200000.] #Define an Assimulo problem self.mod = Implicit_Problem(f,y0,yd0) self.mod_t0 = Implicit_Problem(f,y0,yd0,1.0) #Define an explicit solver self.sim = Radau5DAE(self.mod) #Create a Radau5 solve self.sim_t0 = Radau5DAE(self.mod_t0) #Sets the parameters self.sim.atol = 1e-4 #Default 1e-6 self.sim.rtol = 1e-4 #Default 1e-6 self.sim.inith = 1.e-4 #Initial step-size
def test_time_event(self): f = lambda t,y,yd: y-yd global tnext global nevent tnext = 0.0 nevent = 0 def time_events(t,y,yd,sw): global tnext,nevent events = [1.0, 2.0, 2.5, 3.0] for ev in events: if t < ev: tnext = ev break else: tnext = None nevent += 1 return tnext def handle_event(solver, event_info): #solver.y+= 1.0 global tnext nose.tools.assert_almost_equal(solver.t, tnext) assert event_info[0] == [] assert event_info[1] == True exp_mod = Implicit_Problem(f,0.0,0.0) exp_mod.time_events = time_events exp_mod.handle_event = handle_event #CVode exp_sim = Radau5DAE(exp_mod) exp_sim.verbosity = 0 exp_sim(5.,100) assert nevent == 5
def test_nbr_fcn_evals_due_to_jac(self): sim = Radau5DAE(self.mod) sim.usejac = False sim.simulate(1) assert sim.statistics["nfcnjacs"] > 0
def test_init(self): """ This tests the functionality of Radau5 Implicit Init. """ #Test both y0 in problem and not. sim = Radau5DAE(self.mod) assert sim._leny == 2
def test_simulate_explicit(self): """ Test a simulation of an explicit problem using Radau5DAE. """ f = lambda t,y:N.array(-y) y0 = [1.0] problem = Explicit_Problem(f,y0) simulator = Radau5DAE(problem) assert simulator.yd0[0] == -simulator.y0[0] t,y = simulator.simulate(1.0) nose.tools.assert_almost_equal(float(y[-1]), float(N.exp(-1.0)),4)
def test_switches(self): """ This tests that the switches are actually turned when override. """ res = lambda t,x,xd,sw: N.array([1.0 - xd]) state_events = lambda t,x,xd,sw: N.array([x[0]-1.]) def handle_event(solver, event_info): solver.sw = [False] #Override the switches to point to another instance mod = Implicit_Problem(res,[0.0], [1.0]) mod.sw0 = [True] mod.state_events = state_events mod.handle_event = handle_event sim = Radau5DAE(mod) assert sim.sw[0] == True sim.simulate(3) assert sim.sw[0] == False