Esempio n. 1
0
	def sample_histogram(self,caumass,truemass,bins=20,ax=None):
		if ax == None:
			mp.hist(caumass,bins=bins,color='b',alpha=.6)
			p1 = mp.axvline(truemass,ymin=.8,color='k',lw=1.5)
			p2 = mp.axvline(np.median(caumass*1),ymin=.8,color='g',lw=1.5)
			p3 = mp.axvline(np.mean(caumass*1),ymin=.8,color='c',lw=1.5)
			p4 = mp.axvline(astStats.biweightLocation(caumass*1,6.0),ymin=.8,color='r',lw=1.5)
			mp.legend([p1,p2,p3,p4],["Table Mass","Median","Mean","biweightLocation"])
		else:
			ax.hist(caumass,bins=bins,color='b',alpha=.6)
			p1 = ax.axvline(truemass,ymin=.8,color='k',lw=1.5)
			p2 = ax.axvline(np.median(caumass*1),ymin=.8,color='g',lw=1.5)
			p3 = ax.axvline(np.mean(caumass*1),ymin=.8,color='c',lw=1.5)
			p4 = ax.axvline(astStats.biweightLocation(caumass*1,6.0),ymin=.8,color='r',lw=1.5)
			ax.legend([p1,p2,p3,p4],["Table Mass","Median","Mean","biweightLocation"],fontsize=8)
Esempio n. 2
0
	def set_sample(self,r,v,mags,rlimit,vlimit=3500,H0=72.0,gal_mem=None):
            ''' The gal_mem argument allows for members to be returned so you have an extra returning value'''
            rvalues = np.array(r)[np.where((r < rlimit) & (v < vlimit) & (v > -vlimit))]
            vvalues = np.array(v)[np.where((r < rlimit) & (v < vlimit) & (v > -vlimit))]
            magvalues = np.array(mags)[np.where((r < rlimit) & (v < vlimit) & (v > -vlimit))]
		
            try: #This fixes the 0 velocity location based on the N galaxies inside our limits
                vfix = astStats.biweightLocation(vvalues[np.where((rvalues<0.5) & (vvalues>-vlimit) & (vvalues<vlimit))],6.0)
                vvalues = vvalues - vfix
            except: #Exception is caught because astStats needs a certain number of galaxies to work
                vfix = np.average(vvalues[np.where((rvalues<0.5) & (vvalues>-3500) & (vvalues<3500))])
                vvalues = vvalues - vfix
            rvalues1 = np.array(rvalues)[np.where((rvalues < rlimit) & (vvalues < vlimit) & (vvalues > -vlimit))]
            vvalues1 = np.array(vvalues)[np.where((rvalues < rlimit) & (vvalues < vlimit) & (vvalues > -vlimit))]
            magvalues1 = np.array(magvalues)[np.where((rvalues < rlimit) & (vvalues < vlimit) & (vvalues > -vlimit))]

            if gal_mem is not None: #If gal_mem is called, it will return an extra value
                memvalues = np.array(gal_mem)[np.where((r < rlimit) & (v < vlimit) & (v > -vlimit))]
                memvalues1 = np.array(memvalues)[np.where((rvalues < rlimit) & (vvalues < vlimit) & (vvalues > -vlimit))]
                return (rvalues1,vvalues1,magvalues1,memvalues1)
            else:
                return (rvalues1,vvalues1,magvalues1)
Esempio n. 3
0
def ss_recover():
    # Preliminary data file upload
    global h, gal_num, line_num, halo_num, r_limit, vlimit, beta
    h, gal_num, line_num, halo_num, r_limit, vlimit, beta = loadtxt(
        ""
        + root
        + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
        + str(run_loc)
        + "/program_constants.tab",
        unpack=True,
    )
    halo_num = int(halo_num)
    line_num, gal_num = int(line_num), int(gal_num)

    # Second preliminary data file upload
    global HaloID, M_crit200, R_crit200, SRAD, ESARD, HVD
    HaloID, M_crit200, R_crit200, SRAD, ESRAD, HVD = loadtxt(
        "" + root + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/" + str(run_loc) + "/simdata.tab",
        unpack=True,
    )
    HaloID = str(HaloID)
    HaloID, M_crit200, R_crit200, SRAD, ESRAD, HVD = (
        HaloID[:halo_num],
        M_crit200[:halo_num],
        R_crit200[:halo_num],
        SRAD[:halo_num],
        ESRAD[:halo_num],
        HVD[:halo_num],
    )

    # First Data file upload
    global ENC_CAUMASS, ENC_INFMASS, ENC_VDISP
    j = 0
    for m in range(halo_num):
        if j == 0:  # Initialization of arrays
            ENC_CAUMASS, ENC_INFMASS, ENC_VDISP = loadtxt(
                ""
                + root
                + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                + str(run_loc)
                + "/halo_"
                + str(m)
                + "_constants.tab",
                usecols=(0, 1, 2),
                unpack=True,
            )
        else:
            ENC_CAUMASSt, ENC_INFMASSt, ENC_VDISPt = loadtxt(
                ""
                + root
                + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                + str(run_loc)
                + "/halo_"
                + str(m)
                + "_constants.tab",
                usecols=(0, 1, 2),
                unpack=True,
            )
            ENC_CAUMASS = hstack([ENC_CAUMASS, ENC_CAUMASSt])
            ENC_INFMASS = hstack([ENC_INFMASS, ENC_INFMASSt])
            ENC_VDISP = hstack([ENC_VDISP, ENC_VDISPt])
        j += 1

        # Second data file upload
    global LINE_CAUMASS, LINE_INFMASS, LINE_VDISP
    j = 0
    for m in range(halo_num):
        if j == 0:  # Initialization of arrays
            LINE_CAUMASS, LINE_INFMASS, LINE_VDISP = loadtxt(
                ""
                + root
                + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                + str(run_loc)
                + "/halo_"
                + str(m)
                + "_linenum.tab",
                unpack=True,
            )
        else:
            line_caumass, line_infmass, line_vdisp = loadtxt(
                ""
                + root
                + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                + str(run_loc)
                + "/halo_"
                + str(m)
                + "_linenum.tab",
                unpack=True,
            )
            LINE_CAUMASS = vstack([LINE_CAUMASS, line_caumass])
            LINE_INFMASS = vstack([LINE_INFMASS, line_infmass])
            LINE_VDISP = vstack([LINE_VDISP, line_vdisp])
        j += 1

        # Third data file upload
    global ENC_CAUSURF, ENC_INFSURF, ENC_INFNFW, x_range
    j = 0
    for m in range(halo_num):
        if j == 0:  # Initialization of arrays
            ENC_CAUSURF, ENC_INFSURF, ENC_INFNFW, x_range = loadtxt(
                ""
                + root
                + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                + str(run_loc)
                + "/halo_"
                + str(m)
                + "_profiles.tab",
                unpack=True,
            )
        else:
            enc_causurf, enc_infsurf, enc_infnfw, x_range = loadtxt(
                ""
                + root
                + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                + str(run_loc)
                + "/halo_"
                + str(m)
                + "_profiles.tab",
                unpack=True,
            )
            ENC_CAUSURF = vstack([ENC_CAUSURF, enc_causurf])
            ENC_INFSURF = vstack([ENC_INFSURF, enc_infsurf])
            ENC_INFNFW = vstack([ENC_INFNFW, enc_infnfw])
        j += 1

        # Fourth data file upload
    global ENC_R, ENC_V, ENC_MAG, ENC_GPX3D, ENC_GPY3D, ENC_GPZ3D, ENC_GVX3D, ENC_GVY3D, ENC_GVZ3D
    ENC_R, ENC_V, ENC_MAG, ENC_GPX3D, ENC_GPY3D, ENC_GPZ3D, ENC_GVX3D, ENC_GVY3D, ENC_GVZ3D = (
        [],
        [],
        [],
        [],
        [],
        [],
        [],
        [],
        [],
    )
    j = 0
    for m in range(halo_num):
        enc_r, enc_v, enc_mag, enc_gpx3d, enc_gpy3d, enc_gpz3d, enc_gvx3d, enc_gvy3d, enc_gvz3d = loadtxt(
            ""
            + root
            + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
            + str(run_loc)
            + "/halo_"
            + str(m)
            + "_RVdata.tab",
            unpack=True,
        )
        ENC_R.append(enc_r)
        ENC_V.append(enc_v)
        ENC_MAG.append(enc_mag)
        ENC_GPX3D.append(enc_gpx3d)
        ENC_GPY3D.append(enc_gpy3d)
        ENC_GPZ3D.append(enc_gpz3d)
        ENC_GVX3D.append(enc_gvx3d)
        ENC_GVY3D.append(enc_gvy3d)
        ENC_GVZ3D.append(enc_gvz3d)
        j += 1
    ENC_R, ENC_V, ENC_MAG, ENC_GPX3D, ENC_GPY3D, ENC_GPZ3D, ENC_GVX3D, ENC_GVY3D, ENC_GVZ3D = (
        array(ENC_R),
        array(ENC_V),
        array(ENC_MAG),
        array(ENC_GPX3D),
        array(ENC_GPY3D),
        array(ENC_GPZ3D),
        array(ENC_GVX3D),
        array(ENC_GVY3D),
        array(ENC_GVZ3D),
    )
    # Fifth data file to upload
    global LINE_CAUSURF
    j = 0
    for m in range(halo_num):
        if j == 0:
            line_prof = loadtxt(
                ""
                + root
                + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                + str(run_loc)
                + "/halo_"
                + str(m)
                + "_losprofile.tab",
                unpack=True,
            )
            LINE_CAUSURF = array([line_prof[0:line_num]])
        else:
            line_prof = loadtxt(
                ""
                + root
                + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                + str(run_loc)
                + "/halo_"
                + str(m)
                + "_losprofile.tab",
                unpack=True,
            )
            line_causurf = array([line_prof[0:line_num]])
            LINE_CAUSURF = vstack([LINE_CAUSURF, line_causurf])
        j += 1

        # Sixth data set upload (los rv data)
    if get_los == True:
        global LINE_R, LINE_V, LINE_MAG
        LINE_R, LINE_V, LINE_MAG = [], [], []
        j = 0
        for m in range(halo_num):
            line_r, line_v, line_mag = [], [], []
            for l in range(line_num):
                r, v, mag = loadtxt(
                    ""
                    + root
                    + "/nkern/Documents/MDB_milliMil_halodata/Caustic/stack_data/"
                    + str(run_loc)
                    + "/LOS_RV/halo_"
                    + str(m)
                    + "_los_"
                    + str(l)
                    + "_rv.tab",
                    unpack=True,
                )
                line_r.append(r)
                line_v.append(v)
                line_mag.append(mag)
            LINE_R.append(line_r)
            LINE_V.append(line_v)
            LINE_MAG.append(line_mag)
        LINE_R, LINE_V, LINE_MAG = array(LINE_R), array(LINE_V), array(LINE_MAG)

        # Other data arrays to use:
    global avg_mfrac, avg_hvdfrac, stack_mfrac, stack_hvdfrac, maLINE_CAUMASS, maLINE_VDISP
    global stack_mbias, stack_mscat, stack_vbias, stack_vscat, avg_mbias, avg_mscat, avg_vbias, avg_vscat

    maLINE_CAUMASS = ma.masked_array(LINE_CAUMASS, mask=LINE_CAUMASS == 0)  # Mask 0 Values
    maLINE_VDISP = ma.masked_array(LINE_VDISP, mask=LINE_VDISP == 0)  # Mask 0 Values

    ### Mass Fractions ###
    # Note: I was using map() as an iterator, but for N = 5, sometimes there are less than 3 non-masked values per los
    # Note: and biweight###() does not take less than 4 unique values. I don't yet know how to incorporate a "try:"
    # Note: statement into an iterator function like map(), so I resort to a "for" loop
    ## Ensemble fractions
    stack_mfrac = ma.log(ENC_CAUMASS / M_crit200)
    stack_hvdfrac = ma.log(ENC_VDISP / HVD)
    ## Averaged fractions
    a_size = halo_num  # This becomes line_num if doing vertical average first!!
    avg_mfrac, avg_hvdfrac = zeros(a_size), zeros(a_size)
    for a in range(a_size):
        try:
            avg_mfrac[a] = astStats.biweightLocation(ma.copy(ma.log(maLINE_CAUMASS[a] / M_crit200[a])), 6.0)
            avg_hvdfrac[a] = astStats.biweightLocation(ma.copy(ma.log(maLINE_VDISP[a] / HVD[a])), 6.0)
        except:
            avg_mfrac[a] = ma.mean(ma.log(maLINE_CAUMASS[a] / M_crit200[a]))
            avg_hvdfrac[a] = ma.mean(ma.log(maLINE_VDISP[a] / M_crit200[a]))
            # Bias and Scatter for Ensemble and LOS Average Systems
    stack_mbias, stack_mscat = (
        astStats.biweightLocation(ma.copy(stack_mfrac), 6.0),
        astStats.biweightScale(ma.copy(stack_mfrac), 9.0),
    )
    avg_mbias, avg_mscat = (
        astStats.biweightLocation(ma.copy(avg_mfrac), 6.0),
        astStats.biweightScale(ma.copy(avg_mfrac), 9.0),
    )
    stack_vbias, stack_vscat = (
        astStats.biweightLocation(ma.copy(stack_hvdfrac), 6.0),
        astStats.biweightScale(ma.copy(stack_hvdfrac), 9.0),
    )
    avg_vbias, avg_vscat = (
        astStats.biweightLocation(ma.copy(avg_hvdfrac), 6.0),
        astStats.biweightScale(ma.copy(avg_hvdfrac), 9.0),
    )
Esempio n. 4
0
	def stat_calc(self,MASS_EST,MASS_TRUE,HVD_EST,HVD_TRUE,data_set=None,ens=True):
		''' Does bias and scatter calculations '''
		# Cut data set if necessary
		if data_set == 'cut_low_mass':
			'''Cutting all 'true' mass estimates below 1e14 off'''
			cut = np.where(MASS_TRUE>1e14)[0]
			MASS_EST = MASS_EST[cut]
			MASS_TRUE = MASS_TRUE[cut]
			HVD_EST = HVD_EST[cut]
			HVD_TRUE = HVD_TRUE[cut]	

		# Define a Masked array for sometimes zero terms
		epsilon = 10.0
		use_est = False				# Use MassCalc estimated r200 mass values if true 
		maMASS_EST	= ma.masked_array(MASS_EST,mask=MASS_EST<epsilon)		# Mask essentially zero values
		maHVD_EST	= ma.masked_array(HVD_EST,mask=HVD_EST<epsilon)


		# Mass / HVD Fractions
		if ens == True:
			# Ensemble Arrays
			MFRAC = np.log(maMASS_EST/MASS_TRUE)
			VFRAC = np.log(maHVD_EST/HVD_TRUE)
		else:
			# LOS Mass Fraction Arrays: 0th axis is halo number, 1st axis is line of sight number
			MFRAC,VFRAC = [],[]
			for a in range(len(MASS_EST)):
				MFRAC.append( ma.log( maMASS_EST[a]/MASS_TRUE[a] ) )
				VFRAC.append( ma.log( maHVD_EST[a]/HVD_TRUE[a] ) )
			MFRAC,VFRAC = np.array(MFRAC),np.array(VFRAC)

		if ens == True:
			mbias,mscat = astStats.biweightLocation(MFRAC,6.0),astStats.biweightScale(MFRAC,9.0)
			vbias,vscat = astStats.biweightLocation(VFRAC,6.0),astStats.biweightScale(VFRAC,9.0)
			return MFRAC,mbias,mscat,VFRAC,vbias,vscat
		else:
			if self.ss:
				# Create vertically averaged (by halo averaged) arrays, with line_num elements
				# biweightLocation takes only arrays with 4 or more elements
				HORZ_MFRAC,HORZ_VFRAC = [],[]
				VERT_MFRAC,VERT_VFRAC = [],[]
				for a in range(self.line_num):
					if len(ma.compressed(MFRAC[:,a])) > 4:
						VERT_MFRAC.append( astStats.biweightLocation( ma.compressed( MFRAC[:,a] ), 6.0 ) )
						VERT_VFRAC.append( astStats.biweightLocation( ma.compressed( VFRAC[:,a] ), 6.0 ) )
					else:
						VERT_MFRAC.append( np.median( ma.compressed( MFRAC[:,a] ) ) )
						VERT_VFRAC.append( np.median( ma.compressed( VFRAC[:,a] ) ) )
				VERT_MFRAC,VERT_VFRAC = np.array(VERT_MFRAC),np.array(VERT_VFRAC)
				# Create horizontally averaged (by line of sight) arrays, with halo_num elements
				for a in self.halo_range:
					if len(ma.compressed(MFRAC[a])) > 4:
						HORZ_MFRAC.append( astStats.biweightLocation( ma.compressed( MFRAC[a] ), 6.0 ) )
						HORZ_VFRAC.append( astStats.biweightLocation( ma.compressed( VFRAC[a] ), 6.0 ) )
					else:
						HORZ_MFRAC.append( np.median( ma.compressed( MFRAC[a] ) ) )
						HORZ_VFRAC.append( np.median( ma.compressed( VFRAC[a] ) ) )
				HORZ_MFRAC,HORZ_VFRAC = np.array(HORZ_MFRAC),np.array(HORZ_VFRAC)
				# Bias and Scatter Calculations
				mbias,mscat = astStats.biweightLocation(VERT_MFRAC,6.0),astStats.biweightScale(VERT_MFRAC,9.0)
				vbias,vscat = astStats.biweightLocation(VERT_VFRAC,6.0),astStats.biweightScale(VERT_VFRAC,9.0)
			else:
				# Bin stack LOS systems need only one average
				mbias,mscat = astStats.biweightLocation(MFRAC,6.0),astStats.biweightScale(MFRAC,9.0)
				vbias,vscat = astStats.biweightLocation(VFRAC,6.0),astStats.biweightScale(VFRAC,9.0)

			return MFRAC,mbias,mscat,VFRAC,vbias,vscat
Esempio n. 5
0
                }
            gal_vlos(u) = gal_pos_vect(0,u)*gal_v(0,u)+gal_pos_vect(1,u)*gal_v(1,u)+gal_pos_vect(2,u)*gal_v(2,u);
            }
            """
            fast = weave.inline(code,['gal_pos_vect','n','gal_dist','gal_vlos','gal_v','new_pos','gal_p'],type_converters=converters.blitz,compiler='gcc')
            r = (halo_dist**2-np.dot(halo_pos_vect*halo_dist,gal_pos_vect)**2)**0.5
            v = gal_vlos-halo_vlos*np.dot(halo_pos_vect,gal_pos_vect) #dot product is cosine of the angle between the halo center and galaxy
            ###################################
            #End of line of sight calculations#
            ###################################
            
            #limit our particles based on set limits in projected radius and los velocity (aka: what we would observe)
            rvalues = np.array(r)[np.where((r < rlimit) & (v < vlimit) & (v > -vlimit))]
            vvalues = np.array(v)[np.where((r < rlimit) & (v < vlimit) & (v > -vlimit))]
            try:
                vfix = astStats.biweightLocation(vvalues[np.where((rvalues<0.5) & (vvalues>-vlimit) & (vvalues<vlimit))],6.0)
                vvalues = vvalues - vfix
            except:
                vfix = np.average(vvalues[np.where((rvalues<0.5) & (vvalues>-3500) & (vvalues<3500))])
                vvalues = vvalues - vfix
            rvalues1 = np.array(rvalues)[np.where((rvalues < rlimit) & (vvalues < vlimit) & (vvalues > -vlimit))]
            vvalues1 = np.array(vvalues)[np.where((rvalues < rlimit) & (vvalues < vlimit) & (vvalues > -vlimit))]
            rvalues = rvalues1
            vvalues = vvalues1
			
            #limit our sample based on a richness limit
            rand_int = np.random.randint(0,rvalues.size,rich_lim)
            rvalues = rvalues[rand_int]
            vvalues = vvalues[rand_int]