for trial in range(ntrials): #sim setup test = Stars_sim(f, init_pt, L1 = None, var = None, verbose = False, maxit = maxit) test.STARS_only = True test.get_mu_star() test.get_h() test.update_L1 = True test2 = Stars_sim(f, init_pt, L1 = None, var = None, verbose = True, maxit = maxit) test2.update_L1 = True #test.STARS_only = True test2.get_mu_star() test2.get_h() test2.train_method = 'GQ' test2.adapt = 2*f.dim test2.regul = test2.var test2.pad_train = 2.0 test2.explore_weight = 2.0 #test2.regul = None dist = None L1_hist = None while test.iter < test.maxit: test.step() test2.step() if test2.active is not None: temp = np.array(subspace_dist(test2.active,f.active)) if dist is None: dist = np.copy(temp) L1_hist = np.copy(np.array(test2.L1)) else: dist = np.append(dist,temp)
test4.adapt = f.adapt # Sets retraining steps test2.adapt = f.adapt test3.adapt = f. adapt #test.update_L1 = True #test2.update_L1 = True #test3.update_L1 = True # Make test2 our adaptive thresholding trial, and test3 our subcycling trial test2.threshadapt = True test3.subcycle = True test3.sub_method = 2 test2.slope_weight = .1 test3.slope_weight = .1 test2.pad_train = 2.0 test2.explore_weight = 2.0 test3.pad_train = 2.0 test3.explore_weight = 2.0 #test4.regul = f.regul #test2.regul = f.regul #test3.regul = f.regul test4.threshold = f.threshold test2.threshold = f.threshold test3.threshold = f.threshold # do 100 steps