Esempio n. 1
0
def test_save_and_load_dprnn(fb):
    model1 = DPRNNTasNet(
        n_src=2, n_repeats=2, bn_chan=16, hid_size=4, chunk_size=20, n_filters=32, fb_name=fb
    )
    test_input = torch.randn(1, 800)
    model_conf = model1.serialize()

    reconstructed_model = DPRNNTasNet.from_pretrained(model_conf)
    assert_allclose(model1(test_input), reconstructed_model(test_input))
Esempio n. 2
0
def DPRNN(conf):
    sys.path.append('./asteroid')
    from asteroid.models import DPRNNTasNet
    from asteroid.utils import tensors_to_device
    from asteroid.models import save_publishable

    model_path = "./models/dprnn_usecase1"
    model = DPRNNTasNet.from_pretrained(model_path)
    # Handle device placement
    if conf["use_gpu"]:
        model.cuda()
    model_device = next(model.parameters()).device

    torch.no_grad().__enter__()

    mix, fs = sf.read(conf["input_path"])

    mix = torch.from_numpy(mix).type(torch.FloatTensor)

    outputs = model.float()(mix)

    return outputs
Esempio n. 3
0
def model_fn(model_dir):    
    with open(os.path.join(model_dir, 'model.pth'), 'rb') as f:
        model = DPRNNTasNet.from_pretrained(f) #
    return model
Esempio n. 4
0
def test_dprnntasnet_sep_from_hf():
    model = DPRNNTasNet.from_pretrained(HF_EXAMPLE_MODEL_IDENTIFER)
    assert isinstance(model, DPRNNTasNet)
Esempio n. 5
0
def main(conf):
    model_path = os.path.join(conf["exp_dir"], "best_model.pth")
    model = DPRNNTasNet.from_pretrained(model_path)
    # Handle device placement
    if conf["use_gpu"]:
        model.cuda()
    model_device = next(model.parameters()).device
    test_set = WhamDataset(
        conf["test_dir"],
        conf["task"],
        sample_rate=conf["sample_rate"],
        nondefault_nsrc=None,
        segment=None,
    )  # Uses all segment length
    # Used to reorder sources only
    loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx")

    # Randomly choose the indexes of sentences to save.
    ex_save_dir = os.path.join(conf["exp_dir"], "examples/")
    if conf["n_save_ex"] == -1:
        conf["n_save_ex"] = len(test_set)
    save_idx = random.sample(range(len(test_set)), conf["n_save_ex"])
    series_list = []
    torch.no_grad().__enter__()
    for idx in tqdm(range(len(test_set))):
        # Forward the network on the mixture.
        mix, sources = tensors_to_device(test_set[idx], device=model_device)
        est_sources = model(mix[None, None])
        _, indxs = torch.sort(torch.sqrt(torch.mean(est_sources**2, dim=-1)),
                              descending=True)
        indxs = indxs[:, :2]
        # we know a-priori that there are 2 sources in WHAM-clean (WSJ0-2mix clean)
        # so we sort the estimated signals and take only the two with highest energy.
        est_sources = est_sources.gather(
            1,
            indxs.unsqueeze(-1).repeat(1, 1, est_sources.shape[-1]))
        loss, reordered_sources = loss_func(est_sources,
                                            sources[None],
                                            return_est=True)
        mix_np = mix[None].cpu().data.numpy()
        sources_np = sources.cpu().data.numpy()
        est_sources_np = reordered_sources.squeeze(0).cpu().data.numpy()
        utt_metrics = get_metrics(
            mix_np,
            sources_np,
            est_sources_np,
            sample_rate=conf["sample_rate"],
            metrics_list=compute_metrics,
        )
        utt_metrics["mix_path"] = test_set.mix[idx][0]
        series_list.append(pd.Series(utt_metrics))

        # Save some examples in a folder. Wav files and metrics as text.
        if idx in save_idx:
            local_save_dir = os.path.join(ex_save_dir, "ex_{}/".format(idx))
            os.makedirs(local_save_dir, exist_ok=True)
            sf.write(local_save_dir + "mixture.wav", mix_np[0],
                     conf["sample_rate"])
            # Loop over the sources and estimates
            for src_idx, src in enumerate(sources_np):
                sf.write(local_save_dir + "s{}.wav".format(src_idx + 1), src,
                         conf["sample_rate"])
            for src_idx, est_src in enumerate(est_sources_np):
                est_src *= np.max(np.abs(mix_np)) / np.max(np.abs(est_src))
                sf.write(
                    local_save_dir + "s{}_estimate.wav".format(src_idx + 1),
                    est_src,
                    conf["sample_rate"],
                )
            # Write local metrics to the example folder.
            with open(local_save_dir + "metrics.json", "w") as f:
                json.dump(utt_metrics, f, indent=0)

    # Save all metrics to the experiment folder.
    all_metrics_df = pd.DataFrame(series_list)
    all_metrics_df.to_csv(os.path.join(conf["exp_dir"], "all_metrics.csv"))

    # Print and save summary metrics
    final_results = {}
    for metric_name in compute_metrics:
        input_metric_name = "input_" + metric_name
        ldf = all_metrics_df[metric_name] - all_metrics_df[input_metric_name]
        final_results[metric_name] = all_metrics_df[metric_name].mean()
        final_results[metric_name + "_imp"] = ldf.mean()
    print("Overall metrics :")
    pprint(final_results)
    with open(os.path.join(conf["exp_dir"], "final_metrics.json"), "w") as f:
        json.dump(final_results, f, indent=0)

    model_dict = torch.load(model_path, map_location="cpu")
    os.makedirs(os.path.join(conf["exp_dir"], "publish_dir"), exist_ok=True)
    publishable = save_publishable(
        os.path.join(conf["exp_dir"], "publish_dir"),
        model_dict,
        metrics=final_results,
        train_conf=train_conf,
    )