Esempio n. 1
0
def generate_chromatogram(n=5, twin=None):
    if twin is None:
        twin = (0, 60)
    t = np.linspace(twin[0], twin[1], 300)
    peak_locs = twin[1] * np.random.random(n)
    peak_ws = 0.2 + 0.8 * np.random.random(n)
    peak_hs = 0.2 + 0.8 * np.random.random(n)

    y = np.zeros(len(t))
    for peak_loc, peak_w, peak_h in zip(peak_locs, peak_ws, peak_hs):
        y += gaussian(t, x=peak_loc, w=peak_w, h=peak_h)
    y += np.random.normal(scale=0.01, size=len(t))
    return TimeSeries(y, t, ['X'])
Esempio n. 2
0
def read_peaks(db, filename, ftype='isodat'):
    if ftype is None:
        with open(filename, 'r') as f:
            header = f.readline()
            if 'd 13C/12C[per mil]vs. VPDB' in header:
                ftype = 'isodat'
            else:
                ftype = 'amdis'
    if ftype == 'amdis':
        delim = '\t'
        cvtr = {'name': 'name',
                'p-s-time': 'rt',
                'p-s-area': 'area'}
    elif ftype == 'isodat':
        delim = ','
        cvtr = {'name': 'peak nr.',
                'p-s-time': 'rt[s]',
                'p-s-area': 'area all[vs]',
                'p-s-width': 'width[s]',
                'p-s-d13c': 'd 13c/12c[per mil]vs. vpdb',
                'p-s-d18o': 'd 18o/16o[per mil]vs. vsmow'}
    headers = None
    mapping = defaultdict(list)
    ref_pk_info = {}
    get_val = lambda line, cols, key: line.split(delim)[cols.index(key)]
    with open(filename, 'r') as f:
        for line in f:
            if bool(re.match('filename' + delim, line, re.I)) \
              or headers is None:
                headers = line.lower().split(',')
                continue
            fn = get_val(line, headers, 'filename')
            if ftype == 'amdis':
                # AMDIS has '.FIN' sufffixes and other stuff, so
                # munge Filename to get it into right format
                CMP_LVL = 2
                fn = op.splitext('/'.join(fn.split('\\')[-CMP_LVL:]))[0]
            # find if filtered filename overlaps with anything in the db
            for dt in db.children_of_type('file'):
                if fn in '/'.join(dt.rawdata.split(op.sep)):
                    break
            else:
                continue
            info = {}
            # load all the predefined fields
            for k in cvtr:
                info[k] = get_val(line, headers, cvtr[k])

            # create peak shapes for plotting
            if ftype == 'isodat':
                rt = float(info['p-s-time']) / 60.
                width = float(info['p-s-width']) / 60.
                t = np.linspace(rt - width, rt + width)
                data = []
                for ion in ['44', '45', '46']:
                    area = float(get_val(line, headers, \
                                         'rarea ' + ion + '[mvs]')) / 60.
                    #bgd = float(get_val(line, headers, \
                    #                       'bgd ' + ion + '[mv]'))
                    height = float(get_val(line, headers, \
                                           'ampl. ' + ion + '[mv]'))
                    # save the height at 44 into the info for linearity
                    if ion == '44':
                        info['p-s-ampl44'] = height
                    # 0.8 is a empirical number to make things look better
                    data.append(gaussian(t, x=rt, w=0.5 * area / height, \
                                         h=height))
                # save info if this is the main ref gas peak
                if info['name'].endswith('*'):
                    ref_pk_info[dt] = info
                ts = TimeSeries(np.array(data).T, t, [44, 45, 46])
            else:
                ts = TimeSeries(np.array([np.nan]), np.array([np.nan]), [''])
            mapping[dt] += [Peak(info, ts)]
    # do drift correction
    if ftype == 'isodat':
        for dt in mapping:
            ref_pks = []
            hgt44 = ref_pk_info[dt]['p-s-ampl44']
            d18o = float(ref_pk_info[dt]['p-s-d18o'])
            d13c = float(ref_pk_info[dt]['p-s-d13c'])
            for pk in mapping[dt]:
                # if the d18o and height are similar, it's a ref peak
                if abs(pk.info['p-s-ampl44'] - hgt44) < 10. and \
                   abs(float(pk.info['p-s-d18o']) - d18o) < 2.:
                    ref_pks.append(pk)

            # get out the Dd13C values and times for the ref gas peaks
            d13cs = [float(pk.info['p-s-d13c']) for pk in ref_pks]
            Dd13cs = np.array(d13cs) - d13c
            rts = [float(pk.info['p-s-time']) for pk in ref_pks]

            # try to fit a linear model through all of them
            p0 = [d13cs[0], 0]
            errfunc = lambda p, x, y: p[0] + p[1] * x - y
            try:
                p, succ = leastsq(errfunc, p0, args=(np.array(rts), Dd13cs))
            except:
                p = p0
            # apply the linear model to get the Dd13C linearity correction
            # for a given time and add it to the value of this peak
            for pk in mapping[dt]:
                pk.info['p-s-d13c'] = str(-errfunc(p, float(pk.info['p-s-time']), \
                                               float(pk.info['p-s-d13c'])))

    # save everything
    with db:
        for dt in mapping:
            dt.children += mapping[dt]