Esempio n. 1
0
    def test_loss_mse(self):
        # =============MSE/MAE============= #
        y_pred = tf.constant([[2., 3., 4.], [2., 3., 7.]])
        y_pred_2 = tf.constant([[2., 9., 4.], [2., 0., 7.]])
        y_true = tf.constant([[2., MAGIC_NUMBER, 4.], [2., MAGIC_NUMBER, 4.]])

        npt.assert_almost_equal(mean_absolute_error(y_true, y_pred).numpy(), [0., 3. / 2.])
        npt.assert_almost_equal(mean_squared_error(y_true, y_pred).numpy(), [0., 9. / 2])

        # make sure neural network prediction won't matter for magic number term
        npt.assert_almost_equal(mean_absolute_error(y_true, y_pred).numpy(),
                                mean_absolute_error(y_true, y_pred_2).numpy())
        npt.assert_almost_equal(mean_squared_error(y_true, y_pred).numpy(),
                                mean_squared_error(y_true, y_pred_2).numpy())
Esempio n. 2
0
    def test_loss_func(self):
        # make sure custom reduce_var works
        var_array = [1, 2, 3, 4, 5]
        self.assertEqual(reduce_var(tf.Variable(var_array)).eval(session=get_session()), np.var(var_array))

        # =============Magic correction term============= #
        y_true = tf.Variable([[2., MAGIC_NUMBER, MAGIC_NUMBER], [2., MAGIC_NUMBER, 4.]])
        npt.assert_array_equal(magic_correction_term(y_true).eval(session=get_session()), [3., 1.5])

        # =============MSE/MAE============= #
        y_pred = tf.Variable([[2., 3., 4.], [2., 3., 7.]])
        y_pred_2 = tf.Variable([[2., 9., 4.], [2., 0., 7.]])
        y_true = tf.Variable([[2., MAGIC_NUMBER, 4.], [2., MAGIC_NUMBER, 4.]])
        npt.assert_almost_equal(mean_absolute_error(y_true, y_pred).eval(session=get_session()), [0., 3. / 2.])
        npt.assert_almost_equal(mean_squared_error(y_true, y_pred).eval(session=get_session()), [0., 9. / 2])

        # make sure neural network prediction won't matter for magic number term
        npt.assert_almost_equal(mean_absolute_error(y_true, y_pred).eval(session=get_session()),
                                mean_absolute_error(y_true, y_pred_2).eval(session=get_session()))
        npt.assert_almost_equal(mean_squared_error(y_true, y_pred).eval(session=get_session()),
                                mean_squared_error(y_true, y_pred_2).eval(session=get_session()))

        # =============Mean Error============= #
        y_pred = tf.Variable([[1., 3., 4.], [2., 3., 7.]])
        y_true = tf.Variable([[2., MAGIC_NUMBER, 3.], [2., MAGIC_NUMBER, 7.]])
        npt.assert_almost_equal(mean_error(y_true, y_pred).eval(session=get_session()), [0., 0.])

        # =============Accuracy============= #
        y_pred = tf.Variable([[1., 0., 0.], [1., 0., 0.]])
        y_true = tf.Variable([[1., MAGIC_NUMBER, 1.], [0., MAGIC_NUMBER, 1.]])
        npt.assert_array_equal(categorical_accuracy(y_true, y_pred).eval(session=get_session()), [1., 0.])
        npt.assert_almost_equal(binary_accuracy(from_logits=False)(y_true, y_pred).eval(session=get_session()),
                                [1. / 2., 0.])

        # =============Abs Percentage Accuracy============= #
        y_pred = tf.Variable([[1., 0., 0.], [1., 0., 0.]])
        y_pred_2 = tf.Variable([[1., 9., 0.], [1., -1., 0.]])
        y_true = tf.Variable([[1., MAGIC_NUMBER, 1.], [1., MAGIC_NUMBER, 1.]])

        npt.assert_array_almost_equal(mean_absolute_percentage_error(y_true, y_pred).eval(session=get_session()),
                                      [50., 50.], decimal=3)
        # make sure neural network prediction won't matter for magic number term
        npt.assert_array_almost_equal(mean_absolute_percentage_error(y_true, y_pred).eval(session=get_session()),
                                      mean_absolute_percentage_error(y_true, y_pred_2).eval(session=get_session()),
                                      decimal=3)

        # =============Percentage Accuracy============= #
        y_pred = tf.Variable([[1., 0., 0.], [1., 0., 0.]])
        y_pred_2 = tf.Variable([[1., 9., 0.], [1., -1., 0.]])
        y_true = tf.Variable([[1., MAGIC_NUMBER, 1.], [1., MAGIC_NUMBER, 1.]])

        npt.assert_array_almost_equal(mean_percentage_error(y_true, y_pred).eval(session=get_session()),
                                      [50., 50.], decimal=3)
        # make sure neural network prediction won't matter for magic number term
        npt.assert_array_almost_equal(mean_percentage_error(y_true, y_pred).eval(session=get_session()),
                                      mean_percentage_error(y_true, y_pred_2).eval(session=get_session()),
                                      decimal=3)

        # =============Mean Squared Log Error============= #
        y_pred = tf.Variable([[1., 0., 0.], [1., 0., 0.]])
        y_pred_2 = tf.Variable([[1., 9., 0.], [1., -1., 0.]])
        y_true = tf.Variable([[1., MAGIC_NUMBER, 1.], [1., MAGIC_NUMBER, 1.]])
        npt.assert_array_almost_equal(mean_squared_logarithmic_error(y_true, y_pred).eval(session=get_session()),
                                      [0.24, 0.24], decimal=3)
        # make sure neural network prediction won't matter for magic number term
        npt.assert_array_almost_equal(mean_squared_logarithmic_error(y_true, y_pred).eval(session=get_session()),
                                      mean_squared_logarithmic_error(y_true, y_pred_2).eval(session=get_session()),
                                      decimal=3)

        # =============Zeros Loss============= #
        y_pred = tf.Variable([[1., 0., 0.], [5., -9., 2.]])
        y_true = tf.Variable([[1., MAGIC_NUMBER, 1.], [1., MAGIC_NUMBER, 1.]])
        npt.assert_array_almost_equal(zeros_loss(y_true, y_pred).eval(session=get_session()), [0., 0.])