Esempio n. 1
0
def main():
    
    reffn = 'tmp/ps1-decals-3.fits'

    splitpat = 'tmp/ps1-hp%02i.fits'
    
    if False:
        cmd = 'hpsplit %s -o %s -n 2' % (reffn, splitpat)
        print cmd
        os.system(cmd)
    
    # hpsplit data/decam/sdss-indexes/calibObj-merge-both{,-2}.fits -o data/decam/sdss-indexes/sdss-hp%02i-ns2.fits -n 2

    # build-astrometry-index -o data/decam/sdss-indexes/index-sdss-z-hp00-2.fits -P 2 -i data/decam/sdss-indexes/sdss-stars-hp00-ns2.fits -S z_psf -H 0 -s 2 -L 20 -I 1408120 -t data/tmp

    cmds = []
    scale = 2
    for hp in range(48):
        indfn = 'tmp/index-ps1-hp%02i-%i.fits' % (hp, scale)
        if os.path.exists(indfn):
            print 'Exists:', indfn
            continue
        catfn = splitpat % hp
        if not os.path.exists(catfn):
            print 'No input catalog:', catfn
            continue
        nstars = 30
        cmd = ('build-astrometry-index -o %s -P %i -i %s -S rmag -H %i -s 2 -L 20 -I 1409260 -t tmp -n %i'
               % (indfn, scale, catfn, hp, nstars))
        print cmd
        cmds.append((cmd,indfn))

    mp = multiproc(8)
    mp.map(_run_one, cmds)
Esempio n. 2
0
def main(opt, cs82field):
	T,F = getTables(cs82field)
	mp = multiproc(opt.threads)

	results = []
	args = []
	alldone = False
	for r,c,f,r0,r1,d0,d1 in zip(F.run, F.camcol, F.field,
								 F.ra0, F.ra1, F.dec0, F.dec1):

		dobands = []
		for band in 'ugriz':
			basename = 'cs82-%s-%04i-%i-%04i-%s' % (cs82field, r, c, f, band)
			outfn = 'mags-%s.fits' % basename
			if opt.skipExisting and os.path.exists(outfn):
				print 'File', outfn, 'exists, skipping.'
				continue
			dobands.append(band)

		if len(dobands) == 0:
			continue

		margin = 10. / 3600.
		print 'Cutting to sources in range of image.'
		Ti = T[(T.ra  + margin >= r0) * (T.ra  - margin <= r1) *
			   (T.dec + margin >= d0) * (T.dec - margin <= d1)]
		print len(Ti), 'CS82 sources in range'
		print 'Creating Tractor sources...'
		maglim = 24
		cat,icat = get_cs82_sources(Ti, maglim=maglim)
		print 'Got', len(cat), 'sources'

		realinds = Ti.index[icat]

		for band in dobands:
			basename = 'cs82-%s-%04i-%i-%04i-%s' % (cs82field, r, c, f, band)
			res = mp.apply(runfield, ((r,c,f,band,basename, r0,r1,d0,d1, opt, cat,realinds),))
			results.append(res)
			if opt.nfields and len(results) >= opt.nfields:
				alldone = True
				break

		if alldone:
			break

	print len(results), 'async jobs'
	for r in results:
		print '  waiting for', r
		if r is None:
			continue
		r.wait()
	print 'Done!'
Esempio n. 3
0
def main():
    decals = FakeDecals()
    # Our list of fake sources to insert into images...
    decals.fake_sources = [PointSource(RaDecPos(0., 0.),
                                       NanoMaggies(g=1000, r=1000, z=1000))]

    # Now, we can either call run_brick()....
    run_brick(None, decals=decals, radec=(0.,0.), width=100, height=100,
              stages=['image_coadds'])

    # ... or the individual stages in the pipeline:
    if False:
        mp = multiproc()
        kwa = dict(W = 100, H=100, ra=0., dec=0., mp=mp, brickname='fakey')
        kwa.update(decals=decals)
        R = stage_tims(**kwa)
        kwa.update(R)
        R = stage_image_coadds(**kwa)
Esempio n. 4
0
def _run_one((dataset, band, rlo, rhi, dlo, dhi, T, sfn)):
    opt = myopts()
    opt.wisedatadirs = wisedatadirs
    opt.minflux = None
    opt.sources = sfn
    opt.nonsdss = True
    opt.wsources = os.path.join(datadir, 'wise-objs-%s.fits' % dataset)
    opt.osources = None
    opt.minsb = 0.005
    opt.ptsrc = False
    opt.pixpsf = False
    opt.force = []
    #opt.force = [104]
    opt.write = True
    opt.ri = None
    opt.di = None
    opt.bandnum = band
    opt.name = '%s-w%i' % (dataset, band)
    opt.picklepat = os.path.join(datadir, opt.name + '-stage%0i.pickle')

    # Plots?
    opt.ps = opt.name
    #opt.ps = None

    mp = multiproc()

    try:
        #runtostage(110, opt, mp, rlo,rhi,dlo,dhi)
        runtostage(108, opt, mp, rlo,rhi,dlo,dhi, indexfn=indexfn)
        #runtostage(700, opt, mp, rlo,rhi,dlo,dhi)
    except:
        import traceback
        print
        traceback.print_exc()
        print
    return None
Esempio n. 5
0
def main():

    F = fits_table('window_flist-cut.fits')
    print len(F), 'SDSS fields'




    reffn = 'data/decam/sdss-indexes/calibObj-merge-both-2.fits'
    if not os.path.exists(reffn):
        TT = []
        bright = photo_flags1_map.get('BRIGHT')
        fns = glob('/clusterfs/riemann/raid006/bosswork/boss/sweeps/eboss.v5b/301/calibObj-??????-?-stargal-primary.fits.gz')
        fns.sort()
        for fn in fns:
            T = fits_table(fn, columns=['ra','dec','psfflux', 'objc_type', 'objc_flags'])
            print 'Read', fn,
            #T.cut(T.dec < 31.)
            T.cut((T.dec > 31.) * (T.dec < 35))
            print len(T), 'in Dec range',
            if len(T) == 0:
                print
                continue
            # I don't think the BRIGHT cut is necessary -- already done by Tinker
            T.cut((T.objc_flags & bright) == 0)
            print len(T), 'non-BRIGHT'
            T.objc_type = T.objc_type.astype(np.int8)
            T.u_psfflux = T.psfflux[:,0]
            T.g_psfflux = T.psfflux[:,1]
            T.r_psfflux = T.psfflux[:,2]
            T.i_psfflux = T.psfflux[:,3]
            T.z_psfflux = T.psfflux[:,4]
            T.delete_column('psfflux')
            T.delete_column('objc_flags')
            TT.append(T)
        T = merge_tables(TT)
        del TT
        T.writeto(reffn)

    # hpsplit data/decam/sdss-indexes/calibObj-merge-both{,-2}.fits -o data/decam/sdss-indexes/sdss-hp%02i-ns2.fits -n 2

    # build-astrometry-index -o data/decam/sdss-indexes/index-sdss-z-hp00-2.fits -P 2 -i data/decam/sdss-indexes/sdss-stars-hp00-ns2.fits -S z_psf -H 0 -s 2 -L 20 -I 1408120 -t data/tmp

    cmds = []
    #scale = 2
    scale = 3
    #for band in ['r','z']:
    for band in ['r']:
        for hp in range(48):
            #indfn = 'data/decam/sdss-indexes/index-sdss-%s-hp%02i-%i.fits' % (band, hp, scale)
            indfn = 'data/decam/sdss-indexes/index-sdss2-%s-hp%02i-%i.fits' % (band, hp, scale)
            if os.path.exists(indfn):
                print 'Exists:', indfn
                continue
            catfn = 'data/decam/sdss-indexes/sdss-hp%02i-ns2.fits' % hp
            if not os.path.exists(catfn):
                print 'No input catalog:', catfn
                continue
            nstars = 30
            cmd = ('build-astrometry-index -o %s -P %i -i %s -S %s_psfflux -f -H %i -s 2 -L 20 -I 1408130 -t data/tmp -n %i'
                   % (indfn, scale, catfn, band, hp, nstars))
            print cmd
            cmds.append((cmd,indfn))

    mp = multiproc(8)
    mp.map(_run_one, cmds)
Esempio n. 6
0
    ps = PlotSequence('hennawi')

    r0,r1 = T.ra.min(),  T.ra.max()
    d0,d1 = T.dec.min(), T.dec.max()
    print 'RA range', r0,r1
    print 'Dec range', d0,d1

    margin = 0.003
    dr = margin / np.cos(np.deg2rad((d0+d1)/2.))
    rlo = r0 - dr
    rhi = r1 + dr
    dlo = d0 - margin
    dhi = d1 + margin

    #mp = multiproc(8)
    mp = multiproc(1)

    #lvl = logging.INFO
    lvl = logging.DEBUG
    logging.basicConfig(level=lvl, format='%(message)s', stream=sys.stdout)

    if do_sdss:
        sdss_forced_phot(r0,r1,d0,d1, rlo, rhi, dlo, dhi, T)


    opt = myopts()
    opt.wisedatadirs = wisedatadirs
    opt.minflux = None
    opt.sources = sfn
    opt.nonsdss = True
    opt.wsources = wsources
Esempio n. 7
0
                    if opt.empty:
                        # log file found
                        allfailed = False
                        break

            if not allfailed:
                continue
            print('All jobs failed for sub', sub.id) #, 'via ssh failure')
            failedsubs.append(sub)
            failedjobs.append(failedjob)

        print('Found total of', len(failedsubs), 'failed Submissions')
        if opt.rerun:
            from process_submissions import try_dosub, try_dojob
            if opt.threads is not None:
                mp = multiproc(opt.threads)
                args = []
                for j in failedjobs:
                    if j is None:
                        continue
                    args.append(j.id) #, j.user_image))
                mp.map(bounce_try_dojob, args)

            else:
                for sub in failedsubs:
                    print('Re-trying sub', sub.id)
                    try_dosub(sub, 1)
            

    if opt.sub:
        sub = Submission.objects.all().get(id=opt.sub)
Esempio n. 8
0
opt.errfrac = 0.
opt.blocks = 1
opt.minsig1 = 0.1
opt.minsig2 = 0.1
opt.nonneg = False
opt.pickle2 = False
opt.sky = False
opt.cells = []
opt.bright1 = None
opt.minradius = 2
opt.photoObjsOnly = False
opt.output = 'cosmos-phot-%s.fits'
opt.outdir = '.'
tiledir = 'wise-coadds'
outdir = '.'
tempoutdir = 'phot-temp'
#pobjoutdir = '%s-pobj'
Time.add_measurement(MemMeas)

ps = PlotSequence('cosmos')

mp = multiproc(8)

mp.map(_bounce_one_tile,
       [((tile, opt, False, ps, A, tiledir, tempoutdir), dict(T=T))
        for tile in A])

#for i,tile in enumerate(A):
#    one_tile(tile, opt, False, ps, A, tiledir, tempoutdir, T=T)
    
Esempio n. 9
0
def runstage(stage, force=[], threads=1, doplots=True, opt=None):
	if threads > 1:
		if False:
			global dpool
			import debugpool
			dpool = debugpool.DebugPool(threads)
			Time.add_measurement(debugpool.DebugPoolMeas(dpool))
			mp = multiproc(pool=dpool)
		else:
			mp = multiproc(pool=multiprocessing.Pool(threads))
			
	else:
		mp = multiproc(threads)

	print 'Runstage', stage

	pfn = 'tractor%02i.pickle' % stage
	if os.path.exists(pfn):
		if stage in force:
			print 'Ignoring pickle', pfn, 'and forcing stage', stage
		else:
			print 'Reading pickle', pfn
			R = unpickle_from_file(pfn)
			return R

	if stage > 0:
		prereqs = {
			100: 0,
			200: 0,
			}
		# Get prereq: from dict, or stage-1
		prereq = prereqs.get(stage, stage-1)
		P = runstage(prereq, force=force, threads=threads, doplots=doplots, opt=opt)

	else:
		P = {}
	print 'Running stage', stage
	F = eval('stage%02i' % stage)

	P.update(mp=mp, doplots=doplots)
	if 'tractor' in P:
		tractor = P['tractor']
		tractor.mp = mp
		tractor.modtype = np.float32

	#P.update(RA = 334.4, DEC = 0.3, sz = 2.*60.) # arcsec
	#P.update(RA = 334.4, DEC = 0.3, sz = 15.*60.) # arcsec

	# "sz" is the square side length of the ROI, in arcsec
	# This is a full SDSS frame (2048 x 2048)
	P.update(RA = 334.32, DEC = 0.315, sz = 0.24 * 3600.)

	#P.update(RA = 334.32, DEC = 0.315, sz = 0.12 * 3600.)

	#plotims = [0,1,2,3, 7,8,9]
	# CFHT, W[1234], ugriz
	plotims = [0, 1,2,3,4, 5,6,7,8,9]
	plotsa = dict(imis=plotims, mp=mp)
	P.update(plotsa=plotsa)
	P.update(opt=opt)
	
	R = F(**P)
	print 'Stage', stage, 'finished'

	if 'tractor' in R:
		try:
			tractor = R['tractor']
			tractor.pickleCache = False
		except:
			pass
	print 'Saving pickle', pfn
	pickle_to_file(R, pfn)
	print 'Saved', pfn
	return R
Esempio n. 10
0
    lines = [l.split() for l in lines]
    T = fits_table()
    types = dict(projcell=np.int16, subcell=np.int16, ra=np.float64, dec=np.float64, mjd=None)
    for i,col in enumerate(cols.split()):
        tt = types.get(col, str)
        if tt is None:
            continue
        vals = [words[i] for words in lines]
        #print('Values for', col, ':', vals)
        # HACK -- base-10 parsing for integer subcell
        if col == 'subcell':
            vals = [int(v, 10) for v in vals]
        T.set(col, np.array([tt(v) for v in vals], dtype=tt))
    return T
        
mp = multiproc(8)

TT = []
for skycell in range(635, 2643+1):
    fn = 'ps1skycells-%i.fits' % skycell
    if os.path.exists(fn):
        print('Reading cached', fn)
        TT.append(fits_table(fn))
        continue

    args = []
    for subcell in range(100):
        args.append((skycell, subcell))
    TTi = mp.map(get_cell, args)

    Ti = merge_tables(TTi)
Esempio n. 11
0
        subh, subw = tim.shape
        tim.subwcs = targetwcs.get_subimage(tim.x0, tim.y0, subw, subh)

        tr = tractor.Tractor([tim], [src])
        mod = tr.getModelImage(0)

        tim.data = tim.data + noise.data + mod.data

        tims.append(tim)

        print(
            'Appended {} image: sky {:.4f} [nanomaggies];  psf fwhm  {:.4f};  zpt  {:.4f}'
            .format(band, sky_level_sig, psf_fwhm, zpt))

    ##
    mp = multiproc()

    ##
    SEDs = sed_matched_filters(bands)

    detmaps, detivs, satmaps = detection_maps(tims,
                                              targetwcs,
                                              bands,
                                              mp=mp,
                                              apodize=None)
    Tnew, newcat, hot = run_sed_matched_filters(SEDs,
                                                bands,
                                                detmaps,
                                                detivs,
                                                omit_xy=None,
                                                targetwcs=targetwcs,
Esempio n. 12
0
def main():
    import optparse

    parser = optparse.OptionParser()
    parser.add_option('--zoom', '-z', type=int, action='append', default=[],
                      help='Add zoom level; default 13')
    parser.add_option('--threads', type=int, default=1, help='Number of threads')
    parser.add_option('--y0', type=int, default=0, help='Start row')
    parser.add_option('--y1', type=int, default=None, help='End row (non-inclusive)')

    parser.add_option('--x0', type=int, default=None)
    parser.add_option('--x1', type=int, default=None)

    parser.add_option('-x', type=int)
    parser.add_option('-y', type=int)

    parser.add_option('--mindec', type=float, default=None, help='Minimum Dec to run')
    parser.add_option('--maxdec', type=float, default=None, help='Maximum Dec to run')

    parser.add_option('--minra', type=float, default=0.,   help='Minimum RA to run')
    parser.add_option('--maxra', type=float, default=360., help='Maximum RA to run')

    parser.add_option('--near', action='store_true', help='Only run tiles near bricks')

    parser.add_option('--near-ccds', action='store_true', help='Only run tiles near CCDs')

    parser.add_option('--queue', action='store_true', default=False,
                      help='Print qdo commands')

    parser.add_option('--all', action='store_true', help='Render all tiles')

    parser.add_option('--ignore', action='store_true', help='Ignore cached tile files',
                      default=False)

    parser.add_option('--top', action='store_true', help='Top levels of the pyramid')

    parser.add_option('--kind', default='image')
    parser.add_option('--scale', action='store_true', help='Scale images?')
    parser.add_option('--coadd', action='store_true', help='Create SDSS coadd images?')
    parser.add_option('--grass', action='store_true', help='progress plot')

    opt,args = parser.parse_args()

    if len(opt.zoom) == 0:
        opt.zoom = [13]

    mp = multiproc(opt.threads)

    if opt.kind == 'sdss':
        if opt.maxdec is None:
            opt.maxdec = 90
        if opt.mindec is None:
            opt.mindec = -25
    elif opt.kind in ['halpha', 'unwise-neo1']:
        if opt.maxdec is None:
            opt.maxdec = 90
        if opt.mindec is None:
            opt.mindec = -90
    else:
        if opt.maxdec is None:
            opt.maxdec = 40
        if opt.mindec is None:
            opt.mindec = -20

    if opt.top:
        top_levels(mp, opt)
        sys.exit(0)

    from legacypipe.common import Decals
    decals = Decals()

    if opt.near:
        if opt.kind == 'sdss':
            B = fits_table(os.path.join(settings.DATA_DIR, 'bricks-sdssco.fits'))
        else:
            B = decals.get_bricks()
        print len(B), 'bricks'

    if opt.scale:
        opt.near_ccds = True

    if opt.near_ccds:
        if opt.kind == 'sdss':
            C = fits_table(os.path.join(settings.DATA_DIR, 'sdss', 'window_flist.fits'),
                           columns=['rerun','ra','dec', 'run', 'camcol', 'field', 'score'])
            C.cut(C.rerun == '301')
            C.cut(C.score >= 0.6)
            #C.delete_column('rerun')
            # SDSS field size
            radius = 1.01 * np.hypot(10., 14.)/2. / 60.
            ccdsize = radius
            print len(C), 'SDSS fields'

        else:
            C = decals.get_ccds()
            print len(C), 'CCDs'
            ccdsize = 0.2

    if opt.x is not None:
        opt.x0 = opt.x
        opt.x1 = opt.x + 1
    if opt.y is not None:
        opt.y0 = opt.y
        opt.y1 = opt.y + 1

    if opt.coadd and opt.kind == 'sdss':
        from legacypipe.common import wcs_for_brick
        from map.views import trymakedirs

        B = decals.get_bricks()
        print len(B), 'bricks'
        B.cut((B.dec >= opt.mindec) * (B.dec < opt.maxdec))
        print len(B), 'in Dec range'
        B.cut((B.ra  >= opt.minra)  * (B.ra  < opt.maxra))
        print len(B), 'in RA range'

        if opt.queue:
            # ~ square-degree tiles
            # RA slices
            rr = np.arange(opt.minra , opt.maxra +1)
            dd = np.arange(opt.mindec, opt.maxdec+1)
            for rlo,rhi in zip(rr, rr[1:]):
                for dlo,dhi in zip(dd, dd[1:]):
                    print 'time python render-tiles.py --kind sdss --coadd --minra %f --maxra %f --mindec %f --maxdec %f' % (rlo, rhi, dlo, dhi)
            sys.exit(0)

        if opt.grass:
            basedir = settings.DATA_DIR
            codir = os.path.join(basedir, 'coadd', 'sdssco')
            rr,dd = [],[]
            exist = []
            for i,b in enumerate(B):
                print 'Brick', b.brickname,
                fn = os.path.join(codir, b.brickname[:3], 'sdssco-%s-%s.fits' % (b.brickname, 'r'))
                print '-->', fn,
                if not os.path.exists(fn):
                    print
                    continue
                print 'found'
                rr.append(b.ra)
                dd.append(b.dec)
                exist.append(i)

            exist = np.array(exist)
            B.cut(exist)
            B.writeto('bricks-sdssco-exist.fits')

            import pylab as plt
            plt.clf()
            plt.plot(rr, dd, 'k.')
            plt.title('SDSS coadd tiles')
            plt.savefig('sdss.png')
            sys.exit(0)

        basedir = settings.DATA_DIR
        codir = os.path.join(basedir, 'coadd', 'sdssco')
        for b in B:
            print 'Brick', b.brickname
            wcs = wcs_for_brick(b, W=2400, H=2400, pixscale=0.396)
            bands = 'gri'
            dirnm = os.path.join(codir, b.brickname[:3])
            fns = [os.path.join(dirnm, 'sdssco-%s-%s.fits' % (b.brickname, band))
                   for band in bands]

            hdr = fitsio.FITSHDR()
            hdr['SURVEY'] = 'SDSS'
            wcs.add_to_header(hdr)

            if all([os.path.exists(fn) for fn in fns]):
                print 'Already exist'
                continue
            ims = map_sdss(req, 1, 0, 0, 0, get_images=True, wcs=wcs, ignoreCached=True,
                           forcescale=0)
            if ims is None:
                print 'No overlap'
                continue
            trymakedirs(os.path.join(dirnm, 'xxx'))
            for fn,band,im in zip(fns,bands, ims):
                fitsio.write(fn, im, header=hdr, clobber=True)
                print 'Wrote', fn

            # Also write scaled versions
            dirnm = os.path.join(basedir, 'scaled', 'sdssco')
            scalepat = os.path.join(dirnm, '%(scale)i%(band)s', '%(brickname).3s', 'sdssco-%(brickname)s-%(band)s.fits')
            for im,band in zip(ims,bands):
                scalekwargs = dict(band=band, brick=b.brickid, brickname=b.brickname)
                imwcs = wcs
                for scale in range(1, 7):
                    print 'Writing scale level', scale
                    im,imwcs,sfn = get_scaled(scalepat, scalekwargs, scale, None,
                                              wcs=imwcs, img=im, return_data=True)
        sys.exit(0)

    if opt.scale:
        if opt.kind == 'sdss':
            C.cut((C.dec >= opt.mindec) * (C.dec < opt.maxdec))
            print len(C), 'in Dec range'
            C.cut((C.ra  >= opt.minra)  * (C.ra  < opt.maxra))
            print len(C), 'in RA range'

            from astrometry.sdss import AsTransWrapper, DR9
            sdss = DR9(basedir=settings.SDSS_DIR)
            sdss.saveUnzippedFiles(settings.SDSS_DIR)
            sdss.setFitsioReadBZ2()
            if settings.SDSS_PHOTOOBJS:
                sdss.useLocalTree(photoObjs=settings.SDSS_PHOTOOBJS,
                                  resolve=settings.SDSS_RESOLVE)
            basedir = settings.DATA_DIR
            scaledir = 'sdss'
            dirnm = os.path.join(basedir, 'scaled', scaledir)
            for im in C:
                from map.views import _read_sip_wcs
                #if im.rerun != '301':
                #    continue
                for band in 'gri':
                    scalepat = os.path.join(dirnm, '%(scale)i%(band)s', '%(rerun)s', '%(run)i', '%(camcol)i', 'sdss-%(run)i-%(camcol)i-%(field)i-%(band)s.fits')
                    tmpsuff = '.tmp%08i' % np.random.randint(100000000)
                    basefn = sdss.retrieve('frame', im.run, im.camcol, field=im.field,
                                           band=band, rerun=im.rerun, tempsuffix=tmpsuff)
                    fnargs = dict(band=band, rerun=im.rerun, run=im.run,
                                  camcol=im.camcol, field=im.field)

                    scaled = 1
                    fn = get_scaled(scalepat, fnargs, scaled, basefn,
                                    read_base_wcs=read_astrans, read_wcs=_read_sip_wcs)
                    print 'get_scaled:', fn

            return 0

        else:
            assert(False)


    for zoom in opt.zoom:
        N = 2**zoom
        if opt.y1 is None:
            y1 = N
        else:
            y1 = opt.y1

        if opt.x0 is None:
            opt.x0 = 0
        x1 = opt.x1
        if x1 is None:
            x1 = N

        # Find grid of Ra,Dec tile centers and select the ones near DECaLS bricks.
        rr,dd = [],[]
        yy = np.arange(opt.y0, y1)
        xx = np.arange(opt.x0, x1)

        if opt.grass:
            import pylab as plt
            tileexists = np.zeros((len(yy),len(xx)), bool)

            

            basedir = settings.DATA_DIR
            ver = tileversions[opt.kind][-1]
            tiledir = os.path.join(basedir, 'tiles', opt.kind, '%i'%ver, '%i'%zoom)
            for dirpath,dirnames,filenames in os.walk(tiledir):
                # change walk order
                dirnames.sort()
                if len(filenames) == 0:
                    continue
                print 'Dirpath', dirpath
                #print 'Dirnames', dirnames
                #print 'Filenames', filenames

                # check for symlinks
                if False:
                    fns = []
                    for fn in filenames:
                        fullfn = os.path.join(tiledir, dirpath, fn)
                        if os.path.isfile(fullfn) and not os.path.islink(fullfn):
                            fns.append(fn)
                    print len(fns), 'of', len(filenames), 'are files (not symlinks)'
                    filenames = fns

                x = os.path.basename(dirpath)
                x = int(x)
                #print 'x', x

                yy = [int(fn.replace('.jpg','')) for fn in filenames]
                #print 'yy', yy
                print len(yy), 'tiles'
                for y in yy:
                    tileexists[y - opt.y0, x - opt.x0] = True
            plt.clf()
            plt.imshow(tileexists, interpolation='nearest', origin='upper',
                       vmin=0, vmax=1, cmap='gray')
            fn = 'exist-%s-z%02i' % (opt.kind, zoom)
            plt.savefig(fn+'.png')
            fitsio.write(fn+'.fits', tileexists, clobber=True)
            print 'Wrote', fn+'.png and', fn+'.fits'

            continue

        if not opt.all:
            for y in yy:
                wcs,W,H,zoomscale,zoom,x,y = get_tile_wcs(zoom, 0, y)
                r,d = wcs.get_center()
                dd.append(d)
            for x in xx:
                wcs,W,H,zoomscale,zoom,x,y = get_tile_wcs(zoom, x, 0)
                r,d = wcs.get_center()
                rr.append(r)
            dd = np.array(dd)
            rr = np.array(rr)
            if len(dd) > 1:
                tilesize = max(np.abs(np.diff(dd)))
                print 'Tile size:', tilesize
            else:
                if opt.near_ccds or opt.near:
                    try:
                        wcs,W,H,zoomscale,zoom,x,y = get_tile_wcs(zoom, 0, opt.y0+1)
                        r2,d2 = wcs.get_center()
                    except:
                        wcs,W,H,zoomscale,zoom,x,y = get_tile_wcs(zoom, 0, opt.y0-1)
                        r2,d2 = wcs.get_center()
                    tilesize = np.abs(dd[0] - d2)
                    print 'Tile size:', tilesize
                else:
                    tilesize = 180.
            I = np.flatnonzero((dd >= opt.mindec) * (dd <= opt.maxdec))
            print 'Keeping', len(I), 'Dec points between', opt.mindec, 'and', opt.maxdec
            dd = dd[I]
            yy = yy[I]
            I = np.flatnonzero((rr >= opt.minra) * (rr <= opt.maxra))
            print 'Keeping', len(I), 'RA points between', opt.minra, 'and', opt.maxra
            rr = rr[I]
            xx = xx[I]
            
            print len(rr), 'RA points x', len(dd), 'Dec points'
            print 'x tile range:', xx.min(), xx.max(), 'y tile range:', yy.min(), yy.max()

        for iy,y in enumerate(yy):
            print
            print 'Y row', y

            if opt.near:
                d = dd[iy]
                I,J,dist = match_radec(rr, d+np.zeros_like(rr), B.ra, B.dec, 0.25 + tilesize, nearest=True)
                if len(I) == 0:
                    print 'No matches to bricks'
                    continue
                keep = np.zeros(len(rr), bool)
                keep[I] = True
                print 'Keeping', sum(keep), 'tiles in row', y, 'Dec', d
                x = xx[keep]
            elif opt.near_ccds:
                d = dd[iy]
                print 'RA range of tiles:', rr.min(), rr.max()
                print 'Dec of tile row:', d
                I,J,dist = match_radec(rr, d+np.zeros_like(rr), C.ra, C.dec, ccdsize + tilesize, nearest=True)
                if len(I) == 0:
                    print 'No matches to CCDs'
                    continue
                keep = np.zeros(len(rr), bool)
                keep[I] = True
                print 'Keeping', sum(keep), 'tiles in row', y, 'Dec', d
                x = xx[keep]
            else:
                x = xx

            if opt.queue:
                cmd = 'python -u render-tiles.py --zoom %i --y0 %i --y1 %i --kind %s' % (zoom, y, y+1, opt.kind)
                if opt.near_ccds:
                    cmd += ' --near-ccds'
                if opt.all:
                    cmd += ' --all'
                if opt.ignore:
                    cmd += ' --ignore'
                print cmd
                continue

            # if opt.grass:
            #     for xi in x:
            #         basedir = settings.DATA_DIR
            #         ver = tileversions[opt.kind][-1]
            #         tilefn = os.path.join(basedir, 'tiles', opt.kind,
            #                               '%i/%i/%i/%i.jpg' % (ver, zoom, xi, y))
            #         print 'Checking for', tilefn
            #         if os.path.exists(tilefn):
            #             print 'EXISTS'
            #             tileexists[yi-opt.y0, xi-opt.x0]
            #     continue

            args = []
            for xi in x:
                args.append((opt.kind,zoom,xi,y, opt.ignore))
            print 'Rendering', len(args), 'tiles in row y =', y
            mp.map(_bounce_one_tile, args, chunksize=min(100, max(1, len(args)/opt.threads)))
            print 'Rendered', len(args), 'tiles'
Esempio n. 13
0
def main():

    cutToPrimary = True

    if False:
        stars = [
            # David's nearby pairs of F stars
            (3900., 0., 118.37066, 52.527073),
            (3705., 0., 130.17654, 52.750081),
            # High stellar density
            #(0., 0., 270.0, 0.003),
        ]
        # Dustin's stars
        # (4472.001,	0.02514649,	246.47016,	19.066909),
        # (5196.53,   0.02490235, 240.09403,  37.404078),
        # (6179.05,   0.6324392,  310.47791,  57.523221),
        # (6021.875, 0.7000019, 150.52443, -0.478836),
        # (7757.096, 0.06507664, 305.11144, -12.957655),
        # (8088.685, 0.2436366, 253.11475, 11.60716),
        # (8395.096, 0.7563477, 188.34439, 63.442057),
        # (9201.74,  178, 93.971719, 0.56302169),
        # ]

        T = fits_table('stars2.fits')
        print 'Read stars:'
        T.about()
        stars.extend(zip(T.teff, T.teff_sigma, T.ra, T.dec))

        # reformat
        stars = [(ra, dec, [('T_EFF', teff, 'Effective temperature'),
                            ('DT_EFF', dteff, 'Effective temperate error')],
                  cutToPrimary) for teff, dteff, ra, dec in stars]

    elif False:

        sdss = DR9(basedir=tempdir)
        sdss.useLocalTree()
        # near M87 / Virgo cluster
        run, camcol, field = 3836, 2, 258
        pofn = sdss.retrieve('photoObj', run, camcol, field)
        T = fits_table(
            pofn,
            columns=[
                'parent', 'objid', 'ra', 'dec', 'fracdev', 'objc_type',
                'modelflux', 'theta_dev', 'theta_deverr', 'ab_dev',
                'ab_deverr', 'phi_dev_deg', 'theta_exp', 'theta_experr',
                'ab_exp', 'ab_experr', 'phi_exp_deg', 'resolve_status',
                'nchild', 'flags', 'objc_flags', 'run', 'camcol', 'field', 'id'
            ])
        print len(T), 'objects'
        T.cut(T.objc_type == 3)
        print len(T), 'galaxies'
        T.cut(T.nchild == 0)
        print len(T), 'children'
        T.cut(np.argsort(-T.modelflux[:, 2]))

        # keep only one child in each blend family
        parents = set()
        keepi = []
        for i in range(len(T)):
            if T.parent[i] in parents:
                continue
            keepi.append(i)
            parents.add(T.parent[i])
        T.cut(np.array(keepi))
        print len(T), 'unique blend families'
        T = T[:25]

        stars = [(ra, dec, [], cutToPrimary) for ra, dec in zip(T.ra, T.dec)]

    else:

        # Objects in the Stripe82 coadd context in CAS:
        #   select * into mydb.s82 from PhotoPrimary where
        #    ra between 5 and 6
        #      and dec between 0 and 1
        #        and (run = 106 or run = 206)  -> s82.fits

        T = fits_table('s82.fits')
        print 'Read', len(T), 'objects'
        T.cut(T.nchild == 0)
        print len(T), 'children'
        T.cut(T.insidemask == 0)
        print len(T), 'not in mask'

        #T.cut(np.hypot(T.ra - 5.0562, T.dec - 0.0643) < 0.001)

        # http://skyserver.sdss.org/dr12/en/help/browser/browser.aspx#&&history=enum+PhotoFlags+E
        for flagname, flagval in [
            ('BRIGHT', 0x2),
            ('EDGE', 0x4),
            ('NODEBLEND', 0x40),
            ('DEBLEND_TOO_MANY_PEAKS', 0x800),
            ('NOTCHECKED', 0x80000),
            ('TOO_LARGE', 0x1000000),
            ('BINNED2', 0x20000000),
            ('BINNED4', 0x40000000),
            ('SATUR_CENTER', 0x80000000000),
            ('INTERP_CENTER', 0x100000000000),
            ('MAYBE_CR', 0x100000000000000),
            ('MAYBE_EGHOST', 0x200000000000000),
        ]:
            T.cut(T.flags & flagval == 0)
            print len(T), 'without', flagname, 'bit set'
            #pass

        # Cut to objects that are likely to appear in the individual images
        T.cut(T.psfmag_r < 22.)
        print 'Cut to', len(T), 'with psfmag_r < 22 in coadd'

        # Select "interesting" objects...
        # for i in range(len(T)):
        #
        #     t = T[i]
        #     ra,dec = t.ra, t.dec
        #
        #     radius = 2. * 0.396 / 3600.
        #     ddec = radius
        #     dra = radius / np.cos(np.deg2rad(dec))
        #     r0,r1 = ra - dra, ra + dra
        #     d0,d1 = dec - ddec, dec + ddec
        #
        #     wlistfn = sdss.filenames.get('window_flist', 'window_flist.fits')
        #     RCF = radec_to_sdss_rcf(ra, dec, tablefn=wlistfn)
        #     print 'Found', len(RCF), 'fields in range.'
        #     keepRCF = []
        #     for run,camcol,field,r,d in RCF:
        #         rr = sdss.get_rerun(run, field)
        #         print 'Rerun:', rr
        #         if rr == '157':
        #             continue
        #         keepRCF.append((run,camcol,field))
        #     RCF = keepRCF
        #     for ifield,(run,camcol,field) in enumerate(RCF):
        #         objfn = sdss.getPath('photoObj', run, camcol, field)
        #         objs = fits_table(objfn)
        #         objs.cut((objs.ra  > r0) * (objs.ra  < r1) *
        #                  (objs.dec > d0) * (objs.dec < d1))
        #         bright = photo_flags1_map.get('BRIGHT')
        #         objs.cut((objs.nchild == 0) * ((objs.objc_flags & bright) == 0))

        # Write out Stripe82 measurements...
        pixscale = 0.396
        pixradius = 25
        radius = np.sqrt(2.) * pixradius * pixscale / 3600.

        Nkeep = 1000

        outdir = 'stamps'

        T.tag = np.array(
            ['%.4f-%.4f.fits' % (r, d) for r, d in zip(T.ra, T.dec)])
        T[:Nkeep].writeto(
            os.path.join(outdir, 'stamps.fits'),
            columns=
            '''tag objid run camcol field ra dec psfmag_u psfmag_g psfmag_r
                          psfmag_i psfmag_z modelmag_u modelmag_g modelmag_r
                          modelmag_i modelmag_z'''.split())

        for i in range(len(T[:Nkeep])):

            # t = T[np.array([i])]
            # print 't:', t
            # t.about()
            # assert(len(t) == 1)

            I, J, d = match_radec(np.array([T.ra[i]]), np.array([T.dec[i]]),
                                  T.ra, T.dec, radius)
            print len(J), 'matched within', radius * 3600., 'arcsec'
            t = T[J]
            print len(t), 'matched within', radius * 3600., 'arcsec'

            tt = fits_table()
            cols = [
                'ra',
                'dec',
                'run',
                'camcol',
                'field',  #'probpsf',
                #'flags', #'type',
                'fracdev_r',  #'probpsf_r', 
                'devrad_r',
                'devraderr_r',
                'devab_r',
                'devaberr_r',
                'devphi_r',
                'devphierr_r',
                'exprad_r',
                'expraderr_r',
                'expab_r',
                'expaberr_r',
                'expphi_r',
                'expphierr_r',
            ]
            for c in cols:
                cout = c
                # drop "_r" from dev/exp shapes
                if cout.endswith('_r'):
                    cout = cout[:-2]

                coutmap = dict(devrad='theta_dev',
                               devphi='phi_dev',
                               devab='ab_dev',
                               devraderr='theta_dev_err',
                               devphierr='phi_dev_err',
                               devaberr='ab_dev_err',
                               exprad='theta_exp',
                               expphi='phi_exp',
                               expab='ab_exp',
                               expraderr='theta_exp_err',
                               expphierr='phi_exp_err',
                               expaberr='ab_exp_err',
                               fracdev='frac_dev')
                cout = coutmap.get(cout, cout)

                tt.set(cout, t.get(c))

            tt.is_star = (t.type == 6)

            for magname in ['psf', 'dev', 'exp']:
                for band in 'ugriz':
                    mag = t.get('%smag_%s' % (magname, band))
                    magerr = t.get('%smagerr_%s' % (magname, band))

                    ### FIXME -- arcsinh mags??

                    flux = NanoMaggies.magToNanomaggies(mag)
                    dflux = np.abs(flux * np.log(10.) / -2.5 * magerr)

                    tt.set('%sflux_%s' % (magname, band), flux)
                    tt.set('%sfluxerr_%s' % (magname, band), dflux)

            for band in 'ugriz':
                # http://www.sdss3.org/dr10/algorithms/magnitudes.php#cmodel
                fexp = tt.get('expflux_%s' % band)
                fdev = tt.get('expflux_%s' % band)
                fracdev = t.get('fracdev_%s' % band)
                tt.set('cmodelflux_%s' % band,
                       fracdev * fdev + (1. - fracdev) * fexp)

            catfn = os.path.join(
                outdir, 'cat-s82-%.4f-%.4f.fits' % (t.ra[0], t.dec[0]))
            tt.writeto(catfn)
            print 'Wrote', catfn

        cutToPrimary = False

        ### HACK -- move old files into place.
        for ra, dec in zip(T.ra, T.dec)[:Nkeep]:
            plotfn = 'stamps-%.4f-%.4f.png' % (ra, dec)
            if os.path.exists(plotfn):
                fns = [plotfn]
                for band in 'ugriz':
                    stampfn = 'stamp-%s-%.4f-%.4f.fits' % (band, ra, dec)
                    fns.append(stampfn)
                catfn = 'cat-%.4f-%.4f.fits' % (ra, dec)
                fns.append(catfn)

                for fn in fns:
                    cmd = 'mv %s %s' % (fn, outdir)
                    print cmd
                    os.system(cmd)

        stars = [(ra, dec, [], cutToPrimary, outdir)
                 for ra, dec in zip(T.ra, T.dec)[:Nkeep]]

    plots = True

    if True:
        from astrometry.util.multiproc import *
        mp = multiproc(8)
        #mp = multiproc()
        mp.map(_bounce_one_blob, stars)

    else:

        # stars = [ (0.,0., 131.59054,  0.66408610),
        #           (0.,0., 147.34576,  0.51657783 ),
        #           ]

        for args in stars:
            ra, dec = stars[:2]
            try:
                fns = oneblob(*stars)
            except:
                import traceback
                traceback.print_exc()
                continue
            if plots:
                stamp_pattern = 'stamp-%%s-%.4f-%.4f.fits' % (ra, dec)
                bands = 'ugriz'
                fns = ['cat'] + [stamp_pattern % band for band in bands]
                for j, fn in enumerate(fns[1:]):
                    print 'Filename', fn
                    F = fitsio.FITS(fn)
                    n = len(F) / 2
                    print 'n ext:', n
                    cols = int(np.ceil(np.sqrt(n)))
                    rows = int(np.ceil(n / float(cols)))
                    plt.clf()
                    for i, ext in enumerate(range(0, len(F), 2)):
                        plt.subplot(rows, cols, i + 1)
                        hdr = F[ext].read_header()
                        dimshow(F[ext].read(), ticks=False)
                        plt.title('RCF %i/%i/%i' %
                                  (hdr['RUN'], hdr['CAMCOL'], hdr['FIELD']))
                    plt.suptitle('%s band' % bands[j])
                    plt.savefig(fn.replace('.fits', '.png'))
                    F.close()
                    del F
Esempio n. 14
0
def main():
    import optparse

    parser = optparse.OptionParser()
    parser.add_option('--zoom', '-z', type=int, action='append', default=[],
                      help='Add zoom level; default 13')
    parser.add_option('--threads', type=int, default=1, help='Number of threads')
    parser.add_option('--y0', type=int, default=0, help='Start row')
    parser.add_option('--y1', type=int, default=None, help='End row (non-inclusive)')

    parser.add_option('--x0', type=int, default=None)
    parser.add_option('--x1', type=int, default=None)

    parser.add_option('-x', type=int)
    parser.add_option('-y', type=int)

    parser.add_option('--mindec', type=float, default=None, help='Minimum Dec to run')
    parser.add_option('--maxdec', type=float, default=None, help='Maximum Dec to run')

    parser.add_option('--minra', type=float, default=None,   help='Minimum RA to run')
    parser.add_option('--maxra', type=float, default=None, help='Maximum RA to run')

    parser.add_option('--near', action='store_true', help='Only run tiles near bricks')

    parser.add_option('--near-ccds', action='store_true', help='Only run tiles near CCDs')

    parser.add_option('--queue', action='store_true', default=False,
                      help='Print qdo commands')

    parser.add_option('--all', action='store_true', help='Render all tiles')

    parser.add_option('--ignore', action='store_true', help='Ignore cached tile files',
                      default=False)

    parser.add_option('--top', action='store_true', help='Top levels of the pyramid')

    parser.add_option('--split', action='store_true', help='For split layers (DR6+DR7), only compute one y strip per zoom level')

    parser.add_option('--bricks-exist', action='store_true', help='Create table of bricks that exist')

    parser.add_option('--kind', default='image')
    parser.add_option('--scale', action='store_true', help='Scale images?')
    parser.add_option('--bricks', action='store_true', help='Compute scaled brick tables?')
    parser.add_option('--coadd', action='store_true', help='Create SDSS coadd images?')
    parser.add_option('--grass', action='store_true', help='progress plot')

    parser.add_option('--bands', default=None)

    parser.add_option('-v', '--verbose', dest='verbose', action='count',
                      default=0, help='Make more verbose')


    opt,args = parser.parse_args()

    if opt.verbose == 0:
        lvl = logging.INFO
    else:
        lvl = logging.DEBUG
    logging.basicConfig(level=lvl, format='%(message)s', stream=sys.stdout)


    mp = multiproc(opt.threads)

    if opt.kind in ['sdss', 'sdss2']:
        if opt.maxdec is None:
            opt.maxdec = 90
        if opt.mindec is None:
            opt.mindec = -25
    elif opt.kind in ['halpha', 'unwise-neo1', 'unwise-neo2', 'unwise-neo3', 'unwise-neo4', 'unwise-cat-model',
                      'galex', 'wssa', 'vlass', 'hsc']:
        if opt.maxdec is None:
            opt.maxdec = 90.
        if opt.mindec is None:
            opt.mindec = -90.
        if opt.maxra is None:
            opt.maxra = 360.
        if opt.minra is None:
            opt.minra = 0.

        if opt.kind == 'galex' and opt.bands is None:
            opt.bands = 'nf'
        if 'unwise' in opt.kind and opt.bands is None:
            opt.bands = '12'
        if 'vlass' in opt.kind:
            opt.bands = [1]

    elif opt.kind == 'm33':
        if opt.mindec is None:
            opt.mindec = 30.40
        if opt.maxdec is None:
            opt.maxdec = 30.90
        if opt.minra is None:
            opt.minra = 23.29
        if opt.maxra is None:
            opt.maxra = 23.73

    elif opt.kind in ['des-dr1']:
        if opt.maxdec is None:
            opt.maxdec = 6
        if opt.mindec is None:
            opt.mindec = -68
        if opt.maxra is None:
            opt.maxra = 360
        if opt.minra is None:
            opt.minra = 0

    elif opt.kind in ['mzls+bass-dr4', 'mzls+bass-dr4-model', 'mzls+bass-dr4-resid']:
        if opt.maxdec is None:
            opt.maxdec = 90
        if opt.mindec is None:
            opt.mindec = 30
        if opt.maxra is None:
            opt.maxra = 54
        if opt.minra is None:
            opt.minra = 301
    elif opt.kind in ['mzls+bass-dr6', 'mzls+bass-dr6-model', 'mzls+bass-dr6-resid']:
        if opt.maxdec is None:
            opt.maxdec = 90
        if opt.mindec is None:
            opt.mindec = -20
        if opt.maxra is None:
            opt.maxra = 360
        if opt.minra is None:
            opt.minra = 0
    elif opt.kind in ['decaps2', 'decaps2-model', 'decaps2-resid']:
        if opt.maxdec is None:
            opt.maxdec = -20
        if opt.mindec is None:
            opt.mindec = -70
        if opt.maxra is None:
            opt.maxra = 280
        if opt.minra is None:
            opt.minra = 90
    else:
        if opt.maxdec is None:
            opt.maxdec = 40
        if opt.mindec is None:
            opt.mindec = -25
        if opt.maxra is None:
            opt.maxra = 360
        if opt.minra is None:
            opt.minra = 0

    if opt.bands is None:
        opt.bands = 'grz'

    if opt.top:
        top_levels(mp, opt)
        sys.exit(0)

    if opt.bricks:
        from map.views import get_layer
        layer = get_layer(opt.kind)
        for scale in range(1,8):
            B = layer.get_bricks_for_scale(scale)
        sys.exit(0)

    if opt.scale:

        if opt.kind == 'ps1':
            from map.views import get_layer

            fns = glob('data/ps1/skycells/*/ps1-*.fits')
            fns.sort()
            #ps1-1561-021-r.fits
            if len(opt.zoom) == 0:
                opt.zoom = [1,2,3,4,5,6,7]
            print(len(fns), 'PS1 image files')
            layer = get_layer(opt.kind)
            B = layer.get_bricks()
            for i,brick in enumerate(B):
                for band in opt.bands:
                    fn0 = layer.get_filename(brick, band, 0)
                    if not os.path.exists(fn0):
                        continue
                    for scale in opt.zoom:
                        fn = layer.get_filename(brick, band, scale)
                        layer.create_scaled_image(brick, band, scale, fn)
            sys.exit(0)


        # Rebricked
        if opt.kind in ['decals-dr5', 'decals-dr5-model', 'decals-dr7', 'decals-dr7-model',
                        'eboss',
                        'mzls+bass-dr6', 'mzls+bass-dr6-model',
                        'unwise-neo3', 'unwise-neo4', 'unwise-cat-model',
                        'galex', 'wssa', 'des-dr1', 'hsc',
                    ] or opt.kind.startswith('dr8-test'): # or True:
            from map.views import get_layer

            layer = get_layer(opt.kind)

            if opt.queue:
                if len(opt.zoom) == 0:
                    opt.zoom = [1,2,3,4,5,6,7]
                #step = 0.1
                #ras = np.arange(opt.minra, opt.maxra+step, step)
                step = 3.
                #ras = np.arange(opt.minra, opt.maxra+step, step)
                decs = np.arange(opt.mindec, opt.maxdec+step, step)
                for zoom in opt.zoom:
                    for declo,dechi in zip(decs, np.clip(decs[1:], opt.mindec, opt.maxdec)):
                        rstep = step / np.maximum(0.05, np.cos(np.deg2rad((declo+dechi)/2.)))
                        ras = np.arange(opt.minra, opt.maxra+rstep, rstep)
                        for ralo,rahi in zip(ras, np.clip(ras[1:], opt.minra, opt.maxra)):
                            cmd = ('python render-tiles.py --kind %s --scale --minra %f --maxra %f --mindec %f --maxdec %f -z %i' %
                                   (opt.kind, ralo, rahi, declo, dechi, zoom))
                            print(cmd)
                sys.exit(0)


            if len(opt.zoom) == 0:
                opt.zoom = [1]

            for scale in opt.zoom:
                B = layer.get_bricks_for_scale(scale)
                print(len(B), 'bricks for scale', scale)
                B.cut((B.dec >= opt.mindec) * (B.dec <= opt.maxdec))
                print(len(B), 'in Dec range')
                B.cut((B.ra  >= opt.minra)  * (B.ra  <= opt.maxra))
                print(len(B), 'in RA range')

                bands = opt.bands

                has = {}
                for band in bands:
                    if 'has_%s' % band in B.get_columns():
                        has[band] = B.get('has_%s' % band)
                    else:
                        # assume yes
                        has[band] = np.ones(len(B), bool)

                # Run one scale at a time
                args = []
                for ibrick,brick in enumerate(B):
                    for band in bands:
                        if has[band][ibrick]:
                            args.append((layer, brick, band, scale, opt.ignore))
                print(len(args), 'bricks for scale', scale)
                mp.map(_layer_get_filename, args)

            sys.exit(0)
                
        
        if (opt.kind in ['decals-dr3', 'decals-dr3-model',
                         'mzls+bass-dr4', 'mzls+bass-dr4-model',
                         'decaps2', 'decaps2-model', 'eboss', 'ps1']
            or 'dr8b' in opt.kind
            or 'dr8c' in opt.kind):

            from map.views import get_survey, get_layer

            surveyname = opt.kind
            # *-model -> *
            # for prefix in ['decals-dr3', 'mzls+bass-dr4', 'decaps2', 'decals-dr5']:
            #     if prefix in surveyname:
            #         surveyname = prefix

            for suffix in ['-model', '-resid']:
                if surveyname.endswith(suffix):
                    surveyname = surveyname[:-len(suffix)]

            survey = get_survey(surveyname)

            print('Survey:', survey)
            print('  cache_dir:', survey.cache_dir)

            B = survey.get_bricks()
            print(len(B), 'bricks')
            B.cut((B.dec >= opt.mindec) * (B.dec < opt.maxdec))
            print(len(B), 'in Dec range')
            B.cut((B.ra  >= opt.minra)  * (B.ra  < opt.maxra))
            print(len(B), 'in RA range')

            # find all image files
            filetype = 'image'
            model = False
            if '-model' in opt.kind:
                model = True
                filetype = 'model'

            bands = opt.bands

            layer = get_layer(opt.kind)

            has = {}
            for band in bands:
                if 'has_%s' % band in B.get_columns():
                    has[band] = B.get('has_%s' % band)
                else:
                    # assume yes
                    has[band] = np.ones(len(B), bool)

            for scale in opt.zoom:
                args = []
                for ibrick,brick in enumerate(B):
                    for band in bands:
                        if not has[band][ibrick]:
                            print('Brick', brick.brickname, 'does not have', band)
                            continue
                        args.append((layer, brick, band, scale, opt.ignore))
                mp.map(_layer_get_filename, args)
                
            sys.exit(0)

        elif opt.kind == 'sdss2':
            layer = get_layer(opt.kind)
            bands = 'gri'
            scales = opt.zoom
            if len(scales) == 0:
                scales = list(range(1,8))
            for scale in scales:
                #maxscale = 7
                bricks = layer.get_bricks_for_scale(scale)
                print('Got', len(bricks), 'bricks for scale', scale)
                bricks.cut((bricks.dec > opt.mindec) * (bricks.dec <= opt.maxdec) *
                           (bricks.ra  > opt.minra ) * (bricks.ra  <= opt.maxra))
                print('Cut to', len(bricks), 'bricks within RA,Dec box')

                for ibrick,brick in enumerate(bricks):
                    for band in bands:
                        print('Scaling brick', ibrick, 'of', len(bricks), 'scale', scale, 'brick', brick.brickname, 'band', band)
                        fn = layer.get_filename(brick, band, scale)
            sys.exit(0)

        if opt.kind in ['unwise-w1w2', 'unwise-neo2']:
            # scaledir = opt.kind
            # basedir = settings.DATA_DIR
            # dirnm = os.path.join(basedir, 'scaled', scaledir)
            # B = fits_table(os.path.join(basedir, 'unwise-bricks.fits'))
            layer = get_layer(opt.kind)
            B = layer.get_bricks()
            print(len(B), 'unWISE tiles')
            for b in B:
                for band in ['1','2']:
                    for scale in [1,2,3,4,5,6,7]:
                        print('Get brick', b.brickname, 'band', band, 'scale', scale)
                        layer.get_filename(b, band, scale)

        else:
            assert(False)


    if opt.bricks_exist:
        from map.views import get_survey

        surveyname = opt.kind
        filetype = 'image'

        survey = get_survey(surveyname)

        B = survey.get_bricks()
        print(len(B), 'bricks')
        B.cut((B.dec >= opt.mindec) * (B.dec < opt.maxdec))
        print(len(B), 'in Dec range')
        B.cut((B.ra  >= opt.minra)  * (B.ra  < opt.maxra))
        print(len(B), 'in RA range')

        # find all image files
        bands = opt.bands

        has_band = {}
        for b in bands:
            B.set('has_%s' % b, np.zeros(len(B), bool))
            has_band[b] = B.get('has_%s' % b)
        exists = np.zeros(len(B), bool)

        for i,brick in enumerate(B.brickname):
            found = False
            for band in bands:
                fn = survey.find_file(filetype, brick=brick, band=band)
                ex = os.path.exists(fn)
                print('Brick', brick, 'band', band, 'exists?', ex)
                has_band[band][i] = ex
                if ex:
                    found = True
            exists[i] = found

        B.cut(exists)
        B.writeto('bricks-exist-%s.fits' % opt.kind)
        sys.exit(0)

    from map.views import get_survey
    surveyname = opt.kind
    if surveyname.endswith('-model'):
        surveyname = surveyname.replace('-model','')
    if surveyname.endswith('-resid'):
        surveyname = surveyname.replace('-resid','')
    survey = get_survey(surveyname)

    if len(opt.zoom) == 0:
        opt.zoom = [13]
    
    if opt.near:
        if opt.kind == 'sdss':
            B = fits_table(os.path.join(settings.DATA_DIR, 'bricks-sdssco.fits'))
        else:
            B = survey.get_bricks()
        print(len(B), 'bricks')

    #if opt.scale:
    #    opt.near_ccds = True

    if opt.near_ccds:
        if opt.kind == 'sdss':
            C = fits_table(os.path.join(settings.DATA_DIR, 'sdss', 'window_flist.fits'),
                           columns=['rerun','ra','dec', 'run', 'camcol', 'field', 'score'])
            C.cut(C.rerun == '301')
            C.cut(C.score >= 0.6)
            #C.delete_column('rerun')
            # SDSS field size
            radius = 1.01 * np.hypot(10., 14.)/2. / 60.
            ccdsize = radius
            print(len(C), 'SDSS fields')

        else:
            C = survey.get_ccds()
            print(len(C), 'CCDs')
            ccdsize = 0.2

    if opt.x is not None:
        opt.x0 = opt.x
        opt.x1 = opt.x + 1
    if opt.y is not None:
        opt.y0 = opt.y
        opt.y1 = opt.y + 1

    if opt.coadd and opt.kind == 'galex':
        layer = GalexLayer('galex')
        
        # base-level (coadd) bricks
        B = layer.get_bricks()
        print(len(B), 'bricks')
        B.cut((B.dec >= opt.mindec) * (B.dec < opt.maxdec))
        print(len(B), 'in Dec range')
        B.cut((B.ra  >= opt.minra)  * (B.ra  < opt.maxra))
        print(len(B), 'in RA range')

        pat = layer.get_scaled_pattern()
        tempfiles = []
        for b in B:
            for band in ['n','f']:
                fn = pat % dict(scale=0, band=band, brickname=b.brickname)
                layer.create_coadd_image(b, band, 0, fn, tempfiles=tempfiles)
            for fn in tempfiles:
                os.unlink(fn)
        sys.exit(0)

    if opt.coadd and opt.kind == 'sdss':
        from legacypipe.survey import wcs_for_brick
        from map.views import trymakedirs

        #B = survey.get_bricks()
        B = fits_table(os.path.join(settings.DATA_DIR, 'sdss2', 'bricks-sdssco.fits'))
        print(len(B), 'bricks')
        B.cut((B.dec >= opt.mindec) * (B.dec < opt.maxdec))
        print(len(B), 'in Dec range')
        B.cut((B.ra  >= opt.minra)  * (B.ra  < opt.maxra))
        print(len(B), 'in RA range')

        if opt.queue:
            # ~ square-degree tiles
            # RA slices
            rr = np.arange(opt.minra , opt.maxra +1)
            dd = np.arange(opt.mindec, opt.maxdec+1)
            for rlo,rhi in zip(rr, rr[1:]):
                for dlo,dhi in zip(dd, dd[1:]):
                    print('time python render-tiles.py --kind sdss --coadd --minra %f --maxra %f --mindec %f --maxdec %f' % (rlo, rhi, dlo, dhi))
            sys.exit(0)

        if opt.grass:
            basedir = settings.DATA_DIR
            codir = os.path.join(basedir, 'coadd', 'sdssco')
            rr,dd = [],[]
            exist = []
            for i,b in enumerate(B):
                print('Brick', b.brickname,)
                fn = os.path.join(codir, b.brickname[:3], 'sdssco-%s-%s.fits' % (b.brickname, 'r'))
                print('-->', fn,)
                if not os.path.exists(fn):
                    print()
                    continue
                print('found')
                rr.append(b.ra)
                dd.append(b.dec)
                exist.append(i)

            exist = np.array(exist)
            B.cut(exist)
            B.writeto('bricks-sdssco-exist.fits')

            import pylab as plt
            plt.clf()
            plt.plot(rr, dd, 'k.')
            plt.title('SDSS coadd tiles')
            plt.savefig('sdss.png')
            sys.exit(0)

        basedir = settings.DATA_DIR
        codir = os.path.join(basedir, 'coadd', 'sdssco')
        for b in B:
            print('Brick', b.brickname)
            wcs = wcs_for_brick(b, W=2400, H=2400, pixscale=0.396)
            #bands = 'gri'
            bands = 'z'

            dirnm = os.path.join(codir, b.brickname[:3])
            fns = [os.path.join(dirnm, 'sdssco-%s-%s.fits' % (b.brickname, band))
                   for band in bands]

            hdr = fitsio.FITSHDR()
            hdr['SURVEY'] = 'SDSS'
            wcs.add_to_header(hdr)

            if all([os.path.exists(fn) for fn in fns]):
                print('Already exist')
                continue

            from map.oldviews import map_sdss

            ims = map_sdss(req, 1, 0, 0, 0, get_images=True, wcs=wcs, ignoreCached=True,
                           forcescale=0, bands=bands)
            if ims is None:
                print('No overlap')
                continue
            trymakedirs(os.path.join(dirnm, 'xxx'))
            for fn,band,im in zip(fns,bands, ims):
                fitsio.write(fn, im, header=hdr, clobber=True)
                print('Wrote', fn)

            # Also write scaled versions
            # dirnm = os.path.join(basedir, 'scaled', 'sdssco')
            # scalepat = os.path.join(dirnm, '%(scale)i%(band)s', '%(brickname).3s', 'sdssco-%(brickname)s-%(band)s.fits')
            # for im,band in zip(ims,bands):
            #     scalekwargs = dict(band=band, brick=b.brickid, brickname=b.brickname)
            #     imwcs = wcs
            #     for scale in range(1, 7):
            #         print('Writing scale level', scale)
            #         im,imwcs,sfn = get_scaled(scalepat, scalekwargs, scale, None,
            #                                   wcs=imwcs, img=im, return_data=True)
        sys.exit(0)


    for zoom in opt.zoom:
        N = 2**zoom
        if opt.y1 is None:
            y1 = N
        else:
            y1 = opt.y1

        if opt.x0 is None:
            opt.x0 = 0
        x1 = opt.x1
        if x1 is None:
            x1 = N

        if opt.split:
            decsplit = 32.
            y = 2.**zoom/(2.*np.pi) * (np.pi - np.log(np.tan(np.pi/4. + np.deg2rad(decsplit)/2.)))
            y = int(y)
            opt.y0 = y
            y1 = y+1

        # Find grid of Ra,Dec tile centers and select the ones near DECaLS bricks.
        rr,dd = [],[]
        yy = np.arange(opt.y0, y1)
        xx = np.arange(opt.x0, x1)

        if opt.grass:
            import pylab as plt
            tileexists = np.zeros((len(yy),len(xx)), bool)

            

            basedir = settings.DATA_DIR
            ver = tileversions[opt.kind][-1]
            tiledir = os.path.join(basedir, 'tiles', opt.kind, '%i'%ver, '%i'%zoom)
            for dirpath,dirnames,filenames in os.walk(tiledir):
                # change walk order
                dirnames.sort()
                if len(filenames) == 0:
                    continue
                print('Dirpath', dirpath)
                #print 'Dirnames', dirnames
                #print 'Filenames', filenames

                # check for symlinks
                if False:
                    fns = []
                    for fn in filenames:
                        fullfn = os.path.join(tiledir, dirpath, fn)
                        if os.path.isfile(fullfn) and not os.path.islink(fullfn):
                            fns.append(fn)
                    print(len(fns), 'of', len(filenames), 'are files (not symlinks)')
                    filenames = fns

                x = os.path.basename(dirpath)
                x = int(x)
                #print 'x', x

                yy = [int(fn.replace('.jpg','')) for fn in filenames]
                #print 'yy', yy
                print(len(yy), 'tiles')
                for y in yy:
                    tileexists[y - opt.y0, x - opt.x0] = True
            plt.clf()
            plt.imshow(tileexists, interpolation='nearest', origin='upper',
                       vmin=0, vmax=1, cmap='gray')
            fn = 'exist-%s-z%02i' % (opt.kind, zoom)
            plt.savefig(fn+'.png')
            fitsio.write(fn+'.fits', tileexists, clobber=True)
            print('Wrote', fn+'.png and', fn+'.fits')

            continue

        if not opt.all:
            for y in yy:
                wcs,W,H,zoomscale,zoom,x,y = get_tile_wcs(zoom, 0, y)
                r,d = wcs.get_center()
                dd.append(d)
            for x in xx:
                wcs,W,H,zoomscale,zoom,x,y = get_tile_wcs(zoom, x, 0)
                r,d = wcs.get_center()
                rr.append(r)
            dd = np.array(dd)
            rr = np.array(rr)
            if len(dd) > 1:
                tilesize = max(np.abs(np.diff(dd)))
                print('Tile size:', tilesize)
            else:
                if opt.near_ccds or opt.near:
                    try:
                        wcs,W,H,zoomscale,zoom,x,y = get_tile_wcs(zoom, 0, opt.y0+1)
                        r2,d2 = wcs.get_center()
                    except:
                        wcs,W,H,zoomscale,zoom,x,y = get_tile_wcs(zoom, 0, opt.y0-1)
                        r2,d2 = wcs.get_center()
                    tilesize = np.abs(dd[0] - d2)
                    print('Tile size:', tilesize)
                else:
                    tilesize = 180.
            I = np.flatnonzero((dd >= opt.mindec) * (dd <= opt.maxdec))
            print('Keeping', len(I), 'Dec points between', opt.mindec, 'and', opt.maxdec)
            dd = dd[I]
            yy = yy[I]

            if opt.near_ccds:
                margin = tilesize + ccdsize
                I = np.flatnonzero((dd > C.dec.min()-margin) * (dd < C.dec.max()+margin))
                if len(I) == 0:
                    print('No Dec points within range of CCDs')
                    continue
                dd = dd[I]
                yy = yy[I]
                print('Keeping', len(I), 'Dec points within range of CCDs: Dec',
                      dd.min(), dd.max())

            I = np.flatnonzero((rr >= opt.minra) * (rr <= opt.maxra))
            print('Keeping', len(I), 'RA points between', opt.minra, 'and', opt.maxra)
            rr = rr[I]
            xx = xx[I]
            
            print(len(rr), 'RA points x', len(dd), 'Dec points')
            print('x tile range:', xx.min(), xx.max(), 'y tile range:', yy.min(), yy.max())

        for iy,y in enumerate(yy):
            print()
            print('Y row', y)

            if opt.queue:

                if 'decaps2' in opt.kind:
                    layer = get_layer(opt.kind)

                    if zoom >= layer.nativescale:
                        oldscale = 0
                    else:
                        oldscale = (layer.nativescale - zoom)
                        oldscale = np.clip(oldscale, layer.minscale, layer.maxscale)

                    x = 0
                    wcs, W, H, zoomscale, z,xi,yi = get_tile_wcs(zoom, x, y)
                    newscale = layer.get_scale(zoom, 0, y, wcs)

                    if oldscale == newscale:
                        print('Oldscale = newscale = ', oldscale)
                        continue
                    
                
                cmd = 'python -u render-tiles.py --zoom %i --y0 %i --y1 %i --kind %s --mindec %f --maxdec %f' % (zoom, y, y+1, opt.kind, opt.mindec, opt.maxdec)
                cmd += ' --threads 32'
                if opt.near_ccds:
                    cmd += ' --near-ccds'
                if opt.all:
                    cmd += ' --all'
                if opt.ignore:
                    cmd += ' --ignore'
                print(cmd)
                continue

            if opt.near:
                d = dd[iy]
                I,J,dist = match_radec(rr, d+np.zeros_like(rr), B.ra, B.dec, 0.25 + tilesize, nearest=True)
                if len(I) == 0:
                    print('No matches to bricks')
                    continue
                keep = np.zeros(len(rr), bool)
                keep[I] = True
                print('Keeping', sum(keep), 'tiles in row', y, 'Dec', d)
                x = xx[keep]
            elif opt.near_ccds:
                d = dd[iy]
                print('RA range of tiles:', rr.min(), rr.max())
                print('Dec of tile row:', d)
                I,J,dist = match_radec(rr, d+np.zeros_like(rr), C.ra, C.dec, ccdsize + tilesize, nearest=True)
                if len(I) == 0:
                    print('No matches to CCDs')
                    continue
                keep = np.zeros(len(rr), bool)
                keep[I] = True
                print('Keeping', sum(keep), 'tiles in row', y, 'Dec', d)
                x = xx[keep]
            else:
                x = xx

            # if opt.grass:
            #     for xi in x:
            #         basedir = settings.DATA_DIR
            #         ver = tileversions[opt.kind][-1]
            #         tilefn = os.path.join(basedir, 'tiles', opt.kind,
            #                               '%i/%i/%i/%i.jpg' % (ver, zoom, xi, y))
            #         print 'Checking for', tilefn
            #         if os.path.exists(tilefn):
            #             print 'EXISTS'
            #             tileexists[yi-opt.y0, xi-opt.x0]
            #     continue

            args = []
            for xi in x:
                args.append((opt.kind,zoom,xi,y, opt.ignore, False))
                #args.append((opt.kind,zoom,xi,y, opt.ignore, True))
            print('Rendering', len(args), 'tiles in row y =', y)
            mp.map(_bounce_one_tile, args, chunksize=min(100, max(1, int(len(args)/opt.threads))))
            #mp.map(_one_tile, args, chunksize=min(100, max(1, int(len(args)/opt.threads))))
            print('Rendered', len(args), 'tiles')
Esempio n. 15
0
    ps = PlotSequence('hennawi')

    r0,r1 = T.ra.min(),  T.ra.max()
    d0,d1 = T.dec.min(), T.dec.max()
    print('RA range', r0,r1)
    print('Dec range', d0,d1)

    margin = 0.003
    dr = margin / np.cos(np.deg2rad((d0+d1)/2.))
    rlo = r0 - dr
    rhi = r1 + dr
    dlo = d0 - margin
    dhi = d1 + margin

    #mp = multiproc(8)
    mp = multiproc(1)

    #lvl = logging.INFO
    lvl = logging.DEBUG
    logging.basicConfig(level=lvl, format='%(message)s', stream=sys.stdout)

    if do_sdss:
        sdss_forced_phot(r0,r1,d0,d1, rlo, rhi, dlo, dhi, T)


    opt = myopts()
    opt.wisedatadirs = wisedatadirs
    opt.minflux = None
    opt.sources = sfn
    opt.nonsdss = True
    opt.wsources = wsources
Esempio n. 16
0
def redqsos():
    # W4 detections without SDSS matches.
    T = fits_table('w4targets.fits')
    ps = None
    #ps = PlotSequence('redqso')

    arr = os.environ.get('PBS_ARRAYID')
    tag = '-b'
    if arr is not None:
        arr = int(arr)
        #chunk = 100
        chunk = 50
        T = T[arr * chunk: (arr+1) * chunk]
        print('Cut to chunk', (arr * chunk))
        tag = '-%03i' % arr
    
    sdss = DR9()
    sdss.useLocalTree()
    sdss.saveUnzippedFiles('data/unzip')

    mp = multiproc(1)

    #lvl = logging.DEBUG
    lvl = logging.INFO
    logging.basicConfig(level=lvl, format='%(message)s', stream=sys.stdout)

    newcols = {}
    origcols = T.get_columns()
    
    T.done = np.zeros(len(T), np.uint8)

    version = get_svn_version()
    print('SVN version info:', version)

    hdr = fitsio.FITSHDR()
    hdr.add_record(dict(name='PHOT_VER', value=version['Revision'],
                        comment='SVN revision'))
    hdr.add_record(dict(name='PHOT_URL', value=version['URL'], comment='SVN URL'))
    hdr.add_record(dict(name='PHOT_DAT', value=datetime.datetime.now().isoformat(),
                        comment='forced phot run time'))

    for i,(ra,dec) in enumerate(zip(T.ra, T.dec)):
        print()
        print(i)
        print('RA,Dec', ra, dec)
        r0,r1 = ra,ra
        d0,d1 = dec,dec

        #margin = 0.003
        # ~9 SDSS pixel half-box
        margin = 0.001
        
        dr = margin / np.cos(np.deg2rad((d0+d1)/2.))
        rlo = r0 - dr
        rhi = r1 + dr
        dlo = d0 - margin
        dhi = d1 + margin

        sky = True
        #sky = False

        t = T[np.array([i])]
        sdss_forced_phot(r0,r1,d0,d1, rlo, rhi, dlo, dhi, t, ps,
                         sdss=sdss, fitsky=sky)
        #print 'Columns:', t.get_columns()
        #t.about()
        
        for key in t.get_columns():
            if key in origcols:
                continue
            val = t.get(key)
            if not key in newcols:
                newcols[key] = np.zeros(len(T), val.dtype)
                T.set(key, newcols[key])
            print('set', key, i, '=', val[0])
            newcols[key][i] = val[0]
        T.done[i] = 1

        #if i and i % 100 == 0:
        if False:
            fn = 'wisew4phot-interim%s.fits' % tag
            T.writeto(fn, header=hdr)
            print('Wrote', fn)
            
    T.writeto('wisew4phot%s.fits' % tag, header=hdr)
Esempio n. 17
0
psf = None
twcs = ConstantFitsWcs(wcs)
photocal = LinearPhotoCal(1.0, band=band)
sig1 = 1.0
data = np.zeros((H, W), np.float32)

tim = Image(data=data, invvar=np.ones_like(data) / sig1 ** 2, psf=psf, wcs=twcs, photocal=photocal)
tim.subwcs = wcs
tim.band = band
tim.sig1 = sig1

# Render synthetic source into image
re = 0.45

mp = multiproc()
ps = PlotSequence("galdet")

sourcetypes = ["E", "D", "C", "P", "-", "+"]

ccmap = dict(E="r", D="b", C="m", P="g")
ccmap["+"] = "k"
ccmap["-"] = "0.5"

namemap = {"E": "Exp", "D": "deVauc", "C": "composite", "P": "PSF", "+": ">1 src", "-": "No detection"}

for flux in [300.0]:  # , 150. ]:

    S = fits_table()
    S.psffwhm = []
    for t in sourcetypes:
Esempio n. 18
0
def stage_sims(**kwargs):

    W,H = 40,40
    ra,dec = 0.,0.
    band = 'r'
    
    pixscale = 0.262
    ps = pixscale / 3600.
    wcs = Tan(ra, dec, W/2.+0.5, H/2.+0.5,
              -ps, 0., 0., ps, float(W), float(H))
    
    psf = None
    twcs = ConstantFitsWcs(wcs)
    photocal = LinearPhotoCal(1., band=band)
    
    np.random.seed(1000042)
    
    # survey target limiting mag: r=23.6, let's say 5-sig point source
    limit = 23.6
    
    data = np.zeros((H,W), np.float32)
    tim = Image(data=data, inverr=np.ones_like(data), psf=psf, wcs=twcs,
                photocal=photocal)
    tim.subwcs = wcs
    tim.band = band
    tim.skyver = (0,0)
    tim.wcsver = (0,0)
    tim.psfver = (0,0)
    tim.plver = 0
    tim.dq = np.zeros(tim.shape, np.int16)
    tim.dq_bits = dict(satur=1)
    
    mp = multiproc()
    
    sourcetypes = [ 'E','D','S','C','P','-','+' ]
    
    ccmap = dict(E='r', D='b', S='c', C='m', P='g',
                 exp='r', dev='b', simp='c', comp='m', psf='g')
    ccmap['+'] = 'k'
    ccmap['-'] = '0.5'
    
    namemap = { 'E': 'Exp', 'D': 'deVauc', 'C': 'composite', 'P':'PSF', 'S': 'simple', '+':'>1 src', '-':'No detection' }
    
    
    #
    
    #mag = 23.0
    #re = 0.45
    
    mag = np.arange(19.0, 23.5 + 1e-3, 0.5)
    #mag = np.array([19.])
    
    re  = np.arange(0.1, 0.9 + 1e-3, 0.1)
    #re  = np.array([0.9])
    
    psfsig = 2.0
    N = 20
    #N = 1
    
    S = fits_table()
    for t in sourcetypes:
        S.set('frac_%s' % t, [])
    S.frac_U = []
    
    S.mag = []
    S.re = []
    S.imag = []
    S.ire = []
    S.psffwhm = []
    S.mods = []
    S.sig1 = []
    S.dchisq = []
    S.exp_re = []
    
    simk = 0
    
    for imag,mag_i in enumerate(mag):
        for ire,re_i in enumerate(re):
    
            #simk += 1
            #print 'simk', simk
            simk = 9
            np.random.seed(1000 + simk)
            
            S.mag.append(mag_i)
            S.re.append(re_i)
            S.imag.append(imag)
            S.ire.append(ire)
            
            flux = NanoMaggies.magToNanomaggies(mag_i)
    
            gal = ExpGalaxy(RaDecPos(ra, dec), NanoMaggies(**{ band: flux }),
                            EllipseESoft(np.log(re_i), 0., 0.))
    
            var1 = psfsig**2
            psf = GaussianMixturePSF(1.0, 0., 0., var1, var1, 0.)
            tim.psf = psf
            tim.psf_sigma = psfsig
    
            # Set the per-pixel noise based on the PSF size!?!
            limitflux = NanoMaggies.magToNanomaggies(limit)
            psfnorm = 1./(2. * np.sqrt(np.pi) * tim.psf_sigma)
            sig1 = limitflux / 5. * psfnorm
            tim.sig1 = sig1
            tim.inverr[:,:] = 1./sig1
    
            print
            print 'Running mag=', mag_i, 're=', re_i
            print 'psf norm', psfnorm
            print 'limiting flux', limitflux
            print 'sig1:', sig1
            print 'flux:', flux
    
            tr = Tractor([tim], [gal])
            mod = tr.getModelImage(0)
    
            S.mods.append(mod + sig1 * np.random.normal(size=mod.shape))
            S.sig1.append(sig1)
            
            res = run_sim([tim], [gal], N, mods=[mod], 
                          W=W, H=H, ra=ra, dec=dec, mp=mp, bands=[band])
    
            T = res.T
            T.flux = T.flux_r
            T.fluxiv = T.fluxiv_r
            #catalog = res.TT
    
            print 'T.nsrcs:', T.nsrcs
            
            S.psffwhm.append(psfsig * 2.35 * pixscale)
            for t in sourcetypes:
                S.get('frac_%s' % t).append(
                    100. * np.count_nonzero(T.type == t) / float(len(T)))
            S.frac_U.append(100. * np.count_nonzero(T.nsrcs == 0) / float(len(T)))
    
            TT = res.TT
            
            if 'dchisq' in TT.columns():
                dchisq = TT.dchisq
                S.dchisq.append(np.mean(dchisq, axis=0))
            else:
                S.dchisq.append(np.zeros(5))
    
            I = []
            if 'exp_shape_r' in TT.columns():
                I = np.flatnonzero(TT.exp_shape_r > 0)
            if len(I):
                S.exp_re.append(np.mean(TT.exp_shape_r[I]))
            else:
                S.exp_re.append(0.)
    
    S.to_np_arrays()
    print 'S:', len(S)

    rtn = {}
    for k in ['S', 'mag', 're', 'psfsig']:
        rtn[k] = locals()[k]
    return rtn
Esempio n. 19
0
def main():
    import optparse
    parser = optparse.OptionParser('%(prog)')
    parser.add_option('-s',
                      '--sub',
                      type=int,
                      dest='sub',
                      help='Submission ID')
    parser.add_option('-j', '--job', type=int, dest='job', help='Job ID')
    parser.add_option('-u',
                      '--userimage',
                      type=int,
                      dest='uimage',
                      help='UserImage ID')
    parser.add_option('-e',
                      '--email',
                      help='Find user id with given email address')
    parser.add_option('-U',
                      '--userid',
                      help='Find user with given numerical ID',
                      type=int)
    parser.add_option('-i', '--image', type=int, dest='image', help='Image ID')
    parser.add_option('-d',
                      '--disk-file',
                      type=str,
                      dest='df',
                      help='DiskFile id')
    parser.add_option('-r',
                      '--rerun',
                      dest='rerun',
                      action='store_true',
                      help='Re-run this submission/job?')

    parser.add_option(
        '--threads',
        type=int,
        help=
        'Re-run failed jobs within this process using N threads; else submit to process_submissions process.'
    )

    parser.add_option(
        '--chown',
        dest='chown',
        type=int,
        default=0,
        help='Change owner of userimage or submission by user id #')

    parser.add_option(
        '--solve-command',
        help='Command to run instead of ssh to actually solve image')
    parser.add_option(
        '--solve-locally',
        help='Command to run astrometry-engine on this machine, not via ssh')

    parser.add_option('--ssh',
                      action='store_true',
                      default=False,
                      help='Find submissions whose jobs have ssh errors')
    parser.add_option('--minsub',
                      type='int',
                      default=0,
                      help='Minimum submission id to look at')

    parser.add_option('--empty',
                      action='store_true',
                      default=False,
                      help='Find submissions whose jobs have no log files')

    parser.add_option('--delete',
                      action='store_true',
                      default=False,
                      help='Delete everything associated with the given image')

    parser.add_option('--deluser',
                      action='store_true',
                      default=False,
                      help='Delete everything associated with the given user')

    parser.add_option('--delextra',
                      action='store_true',
                      default=False,
                      help='Delete extraneous duplicate jobs?')

    parser.add_option('--hide',
                      action='store_true',
                      default=False,
                      help='For a UserImage, set publicly_visible=False')

    opt, args = parser.parse_args()

    if opt.email:
        users = User.objects.filter(email__contains=opt.email)
        print('Users with email containing "%s":' % opt.email)
        for u in users:
            print(u.id, u, u.email)
        if opt.deluser:
            delete_user(u)
        sys.exit(0)

    if opt.userid:
        users = User.objects.filter(id=opt.userid)
        print('Users with ID', opt.userid)
        for u in users:
            print(u.id, u, u.email)
            print(u.profile)
            print(u.profile)
            for k in [
                    'email', 'first_name', 'last_name', 'profile',
                    'social_auth', 'username'
            ]:
                print(' ', k, getattr(u, k))
            for f in [
                    'get_full_name',
                    'get_short_name',
                    'get_username',
            ]:
                print(' ', f, getattr(u, f)())
        if opt.deluser:
            delete_user(u)
        sys.exit(0)

    if not (opt.sub or opt.job or opt.uimage or opt.image or opt.ssh
            or opt.empty or opt.df):
        print(
            'Must specify one of --sub, --job, or --userimage or --image (or --ssh or --empty)'
        )

        parser.print_help()
        sys.exit(-1)

    if opt.threads is not None:
        mp = multiproc(opt.threads)
    else:
        mp = None

    if opt.ssh or opt.empty or opt.delextra:
        subs = Submission.objects.all()
        if opt.minsub:
            subs = subs.filter(id__gt=opt.minsub)
        subs = subs.order_by('-id')
        failedsubs = []
        failedjobs = []
        for sub in subs:
            print('Checking submission', sub.id)
            allfailed = True
            # last failed Job
            failedjob = None
            uis = sub.user_images.all()
            for ui in uis:
                jobs = ui.jobs.all()
                for job in jobs:
                    print('  job', job.id)
                    if job.status == 'S':
                        print('    -> succeeded')
                        allfailed = False
                        break
                    print('    error msg', job.error_message)
                    logfn = job.get_log_file()
                    if not os.path.exists(logfn):
                        failedjob = job
                        continue

                    if opt.ssh:
                        log = read_file(logfn)
                        # 'Connection refused'
                        # 'Connection timed out'
                        if not 'ssh: connect to host astro.cs.toronto.edu port 22:' in log:
                            allfailed = False
                            break
                        print('SSH failed')
                        failedjob = job

                    if opt.empty:
                        # log file found
                        allfailed = False
                        break

                if opt.delextra:
                    print('Delextra:', len(jobs), 'jobs', len(uis),
                          'uis; failedjob:', failedjob)
                    if len(jobs) > 1 and failedjob is not None:
                        print('Delextra: delete', failedjob)

            if not allfailed:
                continue
            print('All jobs failed for sub', sub.id)  #, 'via ssh failure')
            #failedsubs.append(sub)
            failedjobs.append(failedjob)

        print('Found total of', len(failedsubs), 'failed Submissions and',
              len(failedjobs), 'failed Jobs')
        if opt.rerun:
            from process_submissions import try_dosub, try_dojob

            if opt.threads is not None:
                args = []
                for j in failedjobs:
                    if j is None:
                        continue
                    args.append((j.id, opt.solve_command, opt.solve_locally))
                mp.map(bounce_try_dojob, args)
            else:
                for job in failedjobs:
                    if job is None:
                        continue
                    print('Re-trying job', job.id)
                    try_dojob(job, job.user_image, opt.solve_command,
                              opt.solve_locally)

            # FIXME -- failed subs??
            #
            # else:
            #     for sub in failedsubs:
            #         print('Re-trying sub', sub.id)
            #         try_dosub(sub, 1)

    if opt.df:
        dfs = DiskFile.objects.filter(file_hash=opt.df)
        print('Found', dfs.count(), 'matching DiskFiles')
        for df in dfs:
            print('  ', df)
            print('    ', df.get_path())
            ims = Image.objects.filter(disk_file=df)
            print('  Used by', ims.count(), 'Image objects')
            for im in ims:
                print('    ', im, im.id)
                print('      size %i x %i' % (im.width, im.height))
                print('      thumb Image', im.thumbnail,
                      (im.thumbnail and im.thumbnail.id or ''))
                print('      display Image', im.display_image,
                      (im.display_image and im.display_image.id or ''))

            ims = Image.objects.filter(disk_file=df,
                                       display_image__isnull=False,
                                       thumbnail__isnull=False)
            print('  found', ims.count(),
                  'Images for this df w/ display and thumbnails')

    if opt.sub:
        sub = Submission.objects.all().get(id=opt.sub)
        print('Submission', sub)
        if sub.disk_file is None:
            print('  no disk file')
        else:
            print('Path', sub.disk_file.get_path())
            print('Is fits image:', sub.disk_file.is_fits_image())
            print('Is fits image:', sub.disk_file.file_type)
        print('User:'******'UserImages:', len(uis))
        for ui in uis:
            print('  ', ui)
            print('  user', ui.user)
            print('  with Jobs:', len(ui.jobs.all()))
            for j in ui.jobs.all():
                print('    ', j)

        if opt.chown:
            newuser = User.objects.all().get(id=opt.chown)
            for ui in uis:
                ui.user = newuser
                ui.save()

        if opt.rerun:
            from process_submissions import try_dosub, dosub
            print('Re-trying sub', sub.id)
            #try_dosub(sub, 1)
            dosub(sub)

        if opt.delete:
            print('Deleting submission', sub)
            sub.delete()

    if opt.job:
        job = Job.objects.all().get(id=opt.job)
        print('Job', job)
        print(job.get_dir())
        print('Status:', job.status)
        print('Error message:', job.error_message)
        ui = job.user_image
        print('UserImage:', ui)
        print('User', ui.user)
        im = ui.image
        print('Image', im)
        sub = ui.submission
        print('Submission', sub)
        print(sub.disk_file.get_path())

        if opt.rerun:
            from astrometry.net.process_submissions import try_dojob
            print('Re-trying job', job.id)
            try_dojob(job, ui, opt.solve_command, opt.solve_locally)

        if opt.delete:
            print('Deleting job', job)
            job.delete()

    if opt.uimage:
        ui = UserImage.objects.all().get(id=opt.uimage)
        print('UserImage', ui)
        im = ui.image
        print('Image', im)
        sub = ui.submission
        print('User', ui.user)
        print('Submission', sub)
        print(sub.disk_file.get_path())

        if opt.chown:
            user = User.objects.all().get(id=opt.chown)
            print('User:'******'chowning', ui, 'to', user)
            ui.user = user
            ui.save()

        if opt.delete:
            print('Deleting ui', ui)
            ui.delete()

        if opt.hide:
            print('Hiding ui', ui)
            ui.hide()

    if opt.image:
        im = Image.objects.all().get(id=opt.image)
        # thumbnail
        # display_image
        print('Image:', im, im.id)

        #uis = im.userimage_set()

        uis = UserImage.objects.all().filter(image=im.id)
        print('UserImages:', uis)

        print('Thumbnail:', im.thumbnail)
        print('Display:', im.display_image)

        if opt.delete:
            print('Deleting...')
            im.delete()
            if im.thumbnail:
                im.thumbnail.delete()
            if im.display_image:
                im.display_image.delete()
Esempio n. 20
0
if __name__ == '__main__':

    TT = [fits_table('ccds-annotated/ccds-annotated-%03i.fits' % i) for i in range(515)]
    T = merge_tables(TT)
    T.writeto('ccds-annotated.fits')

    import sys
    sys.exit()
    #sys.exit(main())

    decals = Decals()
    ccds = decals.get_ccds()
    from astrometry.util.multiproc import *
    #mp = multiproc(8)
    mp = multiproc(4)
    N = 1000
    args = []
    i = 0
    while len(ccds):
        c = ccds[:N]
        ccds = ccds[N:]
        args.append((i, c))
        i += 1
    print('Split CCDs file into', len(args), 'pieces')
    print('sizes:', [len(c) for i,c in args])
    mp.map(_bounce_main, args)

    # reassemble outputs
    TT = [fits_table('ccds-annotated/ccds-annotated-%03i.fits' % i) for i,nil in args]
    T = merge_tables(TT)
Esempio n. 21
0
def main():

    cutToPrimary = True

    if True:
        stars = [
            # David's nearby pairs of F stars
            (3900., 0., 118.37066, 52.527073),
            (3705., 0., 130.17654, 52.750081),
            # High stellar density
            #(0., 0., 270.0, 0.003),
            ]
        # Dustin's stars
        # (4472.001,	0.02514649,	246.47016,	19.066909),
        # (5196.53,   0.02490235, 240.09403,  37.404078),
        # (6179.05,   0.6324392,  310.47791,  57.523221),
        # (6021.875, 0.7000019, 150.52443, -0.478836),
        # (7757.096, 0.06507664, 305.11144, -12.957655),
        # (8088.685, 0.2436366, 253.11475, 11.60716),
        # (8395.096, 0.7563477, 188.34439, 63.442057),
        # (9201.74,  178, 93.971719, 0.56302169),
        # ]
    
        ####### (awu) CHANGE THIS TO READ IN ANOTHER FITS FILE
        T = fits_table('stars2.fits')
        print 'Read stars:'
        T.about()
        stars.extend(zip(T.teff, T.teff_sigma, T.ra, T.dec))

        # reformat
        stars = [(ra,dec,[('T_EFF',teff,'Effective temperature'),
                          ('DT_EFF',dteff,'Effective temperate error')],
                  cutToPrimary) for teff,dteff,ra,dec in stars]
        
    elif False:

        sdss = DR9(basedir=tempdir)
        sdss.useLocalTree()
        # near M87 / Virgo cluster
        run,camcol,field = 3836,2,258
        pofn = sdss.retrieve('photoObj', run, camcol, field)
        T = fits_table(pofn, columns=[
            'parent', 'objid', 'ra', 'dec', 'fracdev', 'objc_type', 'modelflux',
            'theta_dev', 'theta_deverr', 'ab_dev', 'ab_deverr', 'phi_dev_deg',
            'theta_exp', 'theta_experr', 'ab_exp', 'ab_experr', 'phi_exp_deg',
            'resolve_status', 'nchild', 'flags', 'objc_flags',
            'run','camcol','field','id'])
        print len(T), 'objects'
        T.cut(T.objc_type == 3)
        print len(T), 'galaxies'
        T.cut(T.nchild == 0)
        print len(T), 'children'
        T.cut(np.argsort(-T.modelflux[:,2]))

        # keep only one child in each blend family
        parents = set()
        keepi = []
        for i in range(len(T)):
            if T.parent[i] in parents:
                continue
            keepi.append(i)
            parents.add(T.parent[i])
        T.cut(np.array(keepi))
        print len(T), 'unique blend families'
        T = T[:25]

        stars = [(ra,dec,[],cutToPrimary) for ra,dec in zip(T.ra, T.dec)]

    else:

        # Objects in the Stripe82 coadd context in CAS:
        #   select * into mydb.s82 from PhotoPrimary where
        #    ra between 5 and 6
        #      and dec between 0 and 1
        #        and (run = 106 or run = 206)  -> s82.fits

        T = fits_table('s82.fits')
        print 'Read', len(T), 'objects'
        T.cut(T.nchild == 0)
        print len(T), 'children'
        T.cut(T.insidemask == 0)
        print len(T), 'not in mask'

        #T.cut(np.hypot(T.ra - 5.0562, T.dec - 0.0643) < 0.001)
        
        # http://skyserver.sdss.org/dr12/en/help/browser/browser.aspx#&&history=enum+PhotoFlags+E
        for flagname,flagval in [('BRIGHT', 0x2),
                                 ('EDGE', 0x4),
                                 ('NODEBLEND', 0x40),
                                 ('DEBLEND_TOO_MANY_PEAKS' , 0x800),
                                 ('NOTCHECKED', 0x80000),
                                 ('TOO_LARGE', 0x1000000),
                                 ('BINNED2', 0x20000000),
                                 ('BINNED4', 0x40000000),
                                 ('SATUR_CENTER', 0x80000000000),
                                 ('INTERP_CENTER', 0x100000000000),
                                 ('MAYBE_CR', 0x100000000000000),
                                 ('MAYBE_EGHOST', 0x200000000000000),
                      ]:
            T.cut(T.flags & flagval == 0)
            print len(T), 'without', flagname, 'bit set'
            #pass
        
        # Cut to objects that are likely to appear in the individual images
        T.cut(T.psfmag_r < 22.)
        print 'Cut to', len(T), 'with psfmag_r < 22 in coadd'

        # Select "interesting" objects...
        # for i in range(len(T)):
        # 
        #     t = T[i]
        #     ra,dec = t.ra, t.dec
        # 
        #     radius = 2. * 0.396 / 3600.
        #     ddec = radius
        #     dra = radius / np.cos(np.deg2rad(dec))
        #     r0,r1 = ra - dra, ra + dra
        #     d0,d1 = dec - ddec, dec + ddec
        #     
        #     wlistfn = sdss.filenames.get('window_flist', 'window_flist.fits')
        #     RCF = radec_to_sdss_rcf(ra, dec, tablefn=wlistfn)
        #     print 'Found', len(RCF), 'fields in range.'
        #     keepRCF = []
        #     for run,camcol,field,r,d in RCF:
        #         rr = sdss.get_rerun(run, field)
        #         print 'Rerun:', rr
        #         if rr == '157':
        #             continue
        #         keepRCF.append((run,camcol,field))
        #     RCF = keepRCF
        #     for ifield,(run,camcol,field) in enumerate(RCF):
        #         objfn = sdss.getPath('photoObj', run, camcol, field)
        #         objs = fits_table(objfn)
        #         objs.cut((objs.ra  > r0) * (objs.ra  < r1) *
        #                  (objs.dec > d0) * (objs.dec < d1))
        #         bright = photo_flags1_map.get('BRIGHT')
        #         objs.cut((objs.nchild == 0) * ((objs.objc_flags & bright) == 0))

        # Write out Stripe82 measurements...
        pixscale = 0.396
        pixradius = 25
        radius = np.sqrt(2.) * pixradius * pixscale / 3600.

        Nkeep = 1000

        outdir = 'stamps'

        T.tag = np.array(['%.4f-%.4f.fits' % (r,d) for r,d in zip(T.ra, T.dec)])
        T[:Nkeep].writeto(os.path.join(outdir, 'stamps.fits'), columns=
                          '''tag objid run camcol field ra dec psfmag_u psfmag_g psfmag_r
                          psfmag_i psfmag_z modelmag_u modelmag_g modelmag_r
                          modelmag_i modelmag_z'''.split())

        for i in range(len(T[:Nkeep])):

            # t = T[np.array([i])]
            # print 't:', t
            # t.about()
            # assert(len(t) == 1)

            I,J,d = match_radec(np.array([T.ra[i]]), np.array([T.dec[i]]),
                                T.ra, T.dec, radius)
            print len(J), 'matched within', radius*3600., 'arcsec'
            t = T[J]
            print len(t), 'matched within', radius*3600., 'arcsec'
            
            tt = fits_table()            
            cols = ['ra','dec','run','camcol','field',#'probpsf',
                    #'flags', #'type',
                    'fracdev_r', #'probpsf_r', 
                    'devrad_r','devraderr_r', 'devab_r', 'devaberr_r',
                    'devphi_r', 'devphierr_r',
                    'exprad_r','expraderr_r', 'expab_r', 'expaberr_r',
                    'expphi_r', 'expphierr_r',
                    ]
            for c in cols:
                cout = c
                # drop "_r" from dev/exp shapes
                if cout.endswith('_r'):
                    cout = cout[:-2]

                coutmap = dict(devrad='theta_dev',
                               devphi='phi_dev',
                               devab ='ab_dev',
                               devraderr='theta_dev_err',
                               devphierr='phi_dev_err',
                               devaberr ='ab_dev_err',
                               exprad='theta_exp',
                               expphi='phi_exp',
                               expab ='ab_exp',
                               expraderr='theta_exp_err',
                               expphierr='phi_exp_err',
                               expaberr ='ab_exp_err',
                               fracdev='frac_dev')
                cout = coutmap.get(cout, cout)
                    
                tt.set(cout, t.get(c))

            tt.is_star = (t.type == 6)

            for magname in ['psf', 'dev', 'exp']:
                for band in 'ugriz':
                    mag = t.get('%smag_%s' % (magname, band))
                    magerr = t.get('%smagerr_%s' % (magname, band))

                    ### FIXME -- arcsinh mags??
                    
                    flux = NanoMaggies.magToNanomaggies(mag)
                    dflux = np.abs(flux * np.log(10.)/-2.5 * magerr)

                    tt.set('%sflux_%s' % (magname, band), flux)
                    tt.set('%sfluxerr_%s' % (magname, band), dflux)

            for band in 'ugriz':
                # http://www.sdss3.org/dr10/algorithms/magnitudes.php#cmodel
                fexp = tt.get('expflux_%s' % band)
                fdev = tt.get('expflux_%s' % band)
                fracdev = t.get('fracdev_%s' % band)
                tt.set('cmodelflux_%s' % band, fracdev * fdev + (1.-fracdev) * fexp)

            catfn = os.path.join(outdir, 'cat-s82-%.4f-%.4f.fits' % (t.ra[0], t.dec[0]))
            tt.writeto(catfn)
            print 'Wrote', catfn
            
        cutToPrimary = False

        ### HACK -- move old files into place.
        for ra,dec in zip(T.ra, T.dec)[:Nkeep]:
            plotfn = 'stamps-%.4f-%.4f.png' % (ra, dec)
            if os.path.exists(plotfn):
                fns = [plotfn]
                for band in 'ugriz':
                    stampfn = 'stamp-%s-%.4f-%.4f.fits' % (band, ra, dec)
                    fns.append(stampfn)
                catfn = 'cat-%.4f-%.4f.fits' % (ra,dec)
                fns.append(catfn)
                
                for fn in fns:
                    cmd = 'mv %s %s' % (fn, outdir)
                    print cmd
                    os.system(cmd)

        stars = [(ra,dec,[],cutToPrimary,outdir) for ra,dec in zip(T.ra, T.dec)[:Nkeep]]

    plots = True

    ###### (awu) CHANGE TO ACHIEVE PARALLEL
    if False:
        from astrometry.util.multiproc import *
        mp = multiproc(8)
        mp = multiproc()
        mp.map(_bounce_one_blob, stars)

    else:

        # stars = [ (0.,0., 131.59054,  0.66408610),
        #           (0.,0., 147.34576,  0.51657783 ),
        #           ]
        
        for args in stars:
            ra,dec = args[:2]
            try:
                fns = oneblob(*args)
            except:
                import traceback
                traceback.print_exc()
                continue
            if plots:
                stamp_pattern = 'stamps/stamp-%%s-%.4f-%.4f.fits' % (ra, dec)
                bands = 'ugriz'
                fns = ['cat'] + [stamp_pattern % band for band in bands]
                for j,fn in enumerate(fns[1:]):
                    print 'Filename', fn
                    F = fitsio.FITS(fn)
                    n = len(F) / 2
                    print 'n ext:', n
                    cols = int(np.ceil(np.sqrt(n)))
                    rows = int(np.ceil(n / float(cols)))
                    plt.clf()
                    #for i,ext in enumerate(range(0, len(F), 2)):
                        #plt.subplot(rows, cols, i+1)
                        #hdr = F[ext].read_header()
                    dimshow(F[0].read(), ticks=False)
                        #plt.title('RCF %i/%i/%i' % (hdr['RUN'], hdr['CAMCOL'], hdr['FIELD']))
                    plt.suptitle('%s band' % bands[j])
                    plt.savefig(fn.replace('.fits','.png'))
                    F.close()
                    del F
Esempio n. 22
0
def main(opt, ps):
	#ralo = 36
	#rahi = 42
	#declo = -1.25
	#dechi = 1.25
	#width = 7
	  
	ralo = 37.5
	rahi = 41.5
	declo = -1.5
	dechi = 2.5
	width = 2.5

	rl,rh = 39,40
	dl,dh = 0,1
	roipoly = np.array([(rl,dl),(rl,dh),(rh,dh),(rh,dl)])

	ra  = (ralo  + rahi ) / 2.
	dec = (declo + dechi) / 2.

	bandnum = 1
	band = 'w%i' % bandnum
	plt.figure(figsize=(12,12))

	#basedir = '/project/projectdirs/bigboss'
	#wisedatadir = os.path.join(basedir, 'data', 'wise')

	wisedatadirs = ['/clusterfs/riemann/raid007/bosswork/boss/wise_level1b',
					'/clusterfs/riemann/raid000/bosswork/boss/wise1ext']

	wisecatdir = '/home/boss/products/NULL/wise/trunk/fits/'

	ofn = 'wise-images-overlapping.fits'

	if os.path.exists(ofn):
		print 'File exists:', ofn
		T = fits_table(ofn)
		print 'Found', len(T), 'images overlapping'

		print 'Reading WCS headers...'
		wcses = []
		T.filename = [fn.strip() for fn in T.filename]
		for fn in T.filename:
			wcs = anwcs(fn, 0)
			wcses.append(wcs)

	else:
		TT = []
		for d in wisedatadirs:
			ifn = os.path.join(d, 'WISE-index-L1b.fits') #'index-allsky-astr-L1b.fits')
			T = fits_table(ifn, columns=['ra','dec','scan_id','frame_num'])
			print 'Read', len(T), 'from WISE index', ifn
			I = np.flatnonzero((T.ra > ralo) * (T.ra < rahi) * (T.dec > declo) * (T.dec < dechi))
			print len(I), 'overlap RA,Dec box'
			T.cut(I)

			fns = []
			for sid,fnum in zip(T.scan_id, T.frame_num):
				print 'scan,frame', sid, fnum
				fn = get_l1b_file(d, sid, fnum, bandnum)
				print '-->', fn
				assert(os.path.exists(fn))
				fns.append(fn)
			T.filename = np.array(fns)
			TT.append(T)
		T = merge_tables(TT)

		wcses = []
		corners = []
		ii = []
		for i in range(len(T)):
			wcs = anwcs(T.filename[i], 0)
			W,H = wcs.get_width(), wcs.get_height()
			rd = []
			for x,y in [(1,1),(1,H),(W,H),(W,1)]:
				rd.append(wcs.pixelxy2radec(x,y))
			rd = np.array(rd)
			if polygons_intersect(roipoly, rd):
				wcses.append(wcs)
				corners.append(rd)
				ii.append(i)

		print 'Found', len(wcses), 'overlapping'
		I = np.array(ii)
		T.cut(I)

		outlines = corners
		corners = np.vstack(corners)

		nin = sum([1 if point_in_poly(ra,dec,ol) else 0 for ol in outlines])
		print 'Number of images containing RA,Dec,', ra,dec, 'is', nin

		r0,r1 = corners[:,0].min(), corners[:,0].max()
		d0,d1 = corners[:,1].min(), corners[:,1].max()
		print 'RA,Dec extent', r0,r1, d0,d1

		T.writeto(ofn)
		print 'Wrote', ofn


	# MAGIC 2.75: approximate pixel scale, "/pix
	S = int(3600. / 2.75)
	print 'Coadd size', S
	cowcs = anwcs_create_box(ra, dec, 1., S, S)

	if False:
		print 'Plotting map...'
		plot = Plotstuff(outformat='png', ra=ra, dec=dec, width=width, size=(800,800))
		out = plot.outline
		plot.color = 'white'
		plot.alpha = 0.07
		plot.apply_settings()

		for wcs in wcses:
			out.wcs = wcs
			out.fill = False
			plot.plot('outline')
			out.fill = True
			plot.plot('outline')

		plot.color = 'gray'
		plot.alpha = 1.0
		plot.lw = 1
		plot.plot_grid(1, 1, 1, 1)

		plot.color = 'red'
		plot.lw = 3
		plot.alpha = 0.75
		out.wcs = cowcs
		out.fill = False
		plot.plot('outline')

		if opt.sources:
			rd = plot.radec
			plot_radec_set_filename(rd, opt.sources)
			plot.plot('radec')

		pfn = ps.getnext()
		plot.write(pfn)
		print 'Wrote', pfn


	# Re-sort by distance to RA,Dec center...
	#I = np.argsort(np.hypot(T.ra - ra, T.dec - dec))
	#T.cut(I)
	# IF YOU DO THIS, MUST ALSO RE-SORT 'wcses'!

	
	if opt.sources:

		# Look at a radius this big, in arcsec, around each source position.
		# 15" = about 6 WISE pixels
		Wrad = 15. / 3600.

		# Look for SDSS objects within this radius; Wrad + a margin
		Srad = Wrad + 5./3600.


		S = fits_table(opt.sources)
		print 'Read', len(S), 'sources from', opt.sources

		groups,singles = cluster_radec(S.ra, S.dec, Wrad, singles=True)
		print 'Source clusters:', groups
		print 'Singletons:', singles

		tractors = []

		sdss = DR9(basedir='data-dr9')
		sband = 'r'

		for i in singles:
			r,d = S.ra[i],S.dec[i]
			print 'Source', i, 'at', r,d
			fn = sdss.retrieve('photoObj', S.run[i], S.camcol[i], S.field[i], band=sband)
			print 'Reading', fn
			oo = fits_table(fn)
			print 'Got', len(oo)
			cat1,obj1,I = get_tractor_sources_dr9(None, None, None, bandname=sband,
												  objs=oo, radecrad=(r,d,Srad), bands=[],
												  nanomaggies=True, extrabands=[band],
												  fixedComposites=True,
												  getobjs=True, getobjinds=True)
			print 'Got', len(cat1), 'SDSS sources nearby'

			# Find images that overlap?

			ims = []
			for j,wcs in enumerate(wcses):

				print 'Filename', T.filename[j]
				ok,x,y = wcs.radec2pixelxy(r,d)
				print 'WCS', j, '-> x,y:', x,y

				if not anwcs_radec_is_inside_image(wcs, r, d):
					continue

				tim = wise.read_wise_level1b(
					T.filename[j].replace('-int-1b.fits',''),
					nanomaggies=True, mask_gz=True, unc_gz=True,
					sipwcs=True, constantInvvar=True, radecrad=(r,d,Wrad))
				ims.append(tim)
			print 'Found', len(ims), 'images containing this source'

			tr = Tractor(ims, cat1)
			tractors.append(tr)
			

		if len(groups):
			# TODO!
			assert(False)

		sys.exit(0)



		# Find additional SDSS sources nearby = within R pixels radius.
		R = 30.
		#R = 50.
		rad = R * 0.396 / 3600.

		cats = []
		objs = []
		for run,camcol,field,r,d in zip(S.run, S.camcol, S.field, S.ra, S.dec):
			fn = sdss.retrieve('photoObj', run, camcol, field, band=sband)
			print 'Reading', fn
			oo = fits_table(fn)
			print 'Got', len(oo)
			cat1,obj1,I = get_tractor_sources_dr9(None, None, None, bandname=sband,
												  objs=oo, radecrad=(r,d,rad), bands=[],
												  nanomaggies=True, extrabands=[band],
												  fixedComposites=True,
												  getobjs=True, getobjinds=True)
			print 'Got', len(cat1), 'SDSS sources nearby'
			cats.append(cat1)
			objs.append(obj1[I])

		# Merge into one big catalog.
		cat = Catalog()
		for c in cats:
			for src in c:
				cat.append(src)
		S = merge_tables(objs)

		print 'Merged catalog has', len(cat), 'entries'
		print 'S table has', len(S)
		assert(len(S) == len(cat))

		if opt.ptsrc:
			print 'Converting all sources to PointSources'
			pcat = Catalog()
			for src in cat:
				ps = PointSource(src.getPosition(), src.getBrightness())
				pcat.append(ps)
			print 'PointSource catalog:', pcat
			cat = pcat

		# ??
		WW = S
		#WW = tabledata()

		# cat = get_tractor_sources_dr9(None, None, None, bandname=sband,
		# 							  objs=S, bands=[], nanomaggies=True,
		# 							  extrabands=[band])

		print 'Got', len(cat), 'tractor sources'
		#cat = Catalog(*cat)
		print cat
		for src in cat:
			print '  ', src

		### FIXME -- match to WISE catalog to initialize mags?

		# Initialize WISE mags to be at least detectable
		# so that we identify the right pixel ROIs below.

		#minbright = NanoMaggies.magToNanomaggies()
		#minbright = 50.
		minbright = 250.

		cat.freezeParamsRecursive('*')
		cat.thawPathsTo(band)
		p0 = cat.getParams()
		cat.setParams(np.maximum(minbright, p0))

		print 'Set minimum W1 brightness:'
		for src in cat:
			print '  ', src

		# Cut images that don't overlap.
		ii = []
		for i,wcs in enumerate(wcses):
			isin = False
			for r,d in zip(S.ra, S.dec):
				if anwcs_radec_is_inside_image(wcs, r, d):
					isin = True
					break
			if isin:
				ii.append(i)
		T.cut(np.array(ii))
		print 'Cut to', len(T), 'images containing sources'


		
	else:
		wfn = 'wise-sources-nearby.fits'
		if os.path.exists(wfn):
			print 'Reading existing file', wfn
			W = fits_table(wfn)
			print 'Got', len(W), 'with range RA', W.ra.min(), W.ra.max(), ', Dec', W.dec.min(), W.dec.max()
		else:
			# Range of WISE slices (inclusive) containing this Dec range.
			ws0, ws1 = 26,27
			WW = []
			for w in range(ws0, ws1+1):
				fn = os.path.join(wisecatdir, 'wise-allsky-cat-part%02i-radec.fits' % w)
				print 'Searching for sources in', fn
				W = fits_table(fn)
				I = np.flatnonzero((W.ra >= r0) * (W.ra <= r1) * (W.dec >= d0) * (W.dec <= d1))
				fn = os.path.join(wisecatdir, 'wise-allsky-cat-part%02i.fits' % w)
				print 'Reading', len(I), 'rows from', fn
				W = fits_table(fn, rows=I)
				print 'Cut to', len(W), 'sources in range'
				WW.append(W)
			W = merge_tables(WW)
			del WW
			print 'Total of', len(W)
			W.writeto(wfn)
			print 'wrote', wfn
	
		# DEBUG
		W.cut((W.ra >= rl) * (W.ra <= rh) * (W.dec >= dl) * (W.dec <= dh))
		print 'Cut to', len(W), 'in the central region'
	
		print 'Creating', len(W), 'Tractor sources'
		cat = Catalog()
		for i in range(len(W)):
			w1 = W.w1mpro[i]
			nm = NanoMaggies.magToNanomaggies(w1)
			cat.append(PointSource(RaDecPos(W.ra[i], W.dec[i]), NanoMaggies(w1=nm)))

		WW = W

	cat.freezeParamsRecursive('*')
	cat.thawPathsTo(band)

	cat0 = cat.getParams()
	br0 = [src.getBrightness().copy() for src in cat]
	nm0 = np.array([b.getBand(band) for b in br0])

	WW.nm0 = nm0

	w1psf = wise.get_psf_model(bandnum, opt.pixpsf)

	# Create fake image in the "coadd" footprint in order to find overlapping
	# sources.
	H,W = int(cowcs.imageh), int(cowcs.imagew)
	# MAGIC -- sigma a bit smaller than typical images (4.0-ish)
	sig = 3.5
	# typical zeropoint
	zp = 20.752
	
	faketim = Image(data=np.zeros((H,W), np.float32),
					invvar=np.zeros((H,W), np.float32) + (1./sig**2),
					psf=w1psf, wcs=ConstantFitsWcs(cowcs), sky=ConstantSky(0.),
					photocal = LinearPhotoCal(NanoMaggies.zeropointToScale(zp),
											  band=band),
					#photocal=LinearPhotoCal(1., band=band),
					name='fake')
	minsb = 0.1 * sig
	#minsb = 0.

	# pc = faketim.getPhotoCal()
	# print 'Source counts:'
	# for src in cat:
	# 	print '  ', src
	# 	print '-->', pc.brightnessToCounts(src.getBrightness())
	# 	print '  -->', [pc.brightnessToCounts(br) for br in src.getBrightnesses()]
	# print 'Source pixel positions:'
	# wcs = faketim.getWcs()
	# for src in cat:
	# 	print '  ', src
	# 	print '--> x,y', wcs.positionToPixel(src.getPosition())
	

	print 'Finding overlapping sources...'
	t0 = Time()
	tractor = Tractor([faketim], cat)
	groups,L,fakemod = tractor.getOverlappingSources(0, minsb=minsb)
	print 'Overlapping sources took', Time()-t0
	print 'Got', len(groups), 'groups of sources'
	nl = L.max()
	gslices = find_objects(L, nl)

	print 'unique labels:', np.unique(L)

	# plt.clf()
	# plt.imshow(fakemod, interpolation='nearest', origin='lower',
	# 		   vmin=0, vmax=sig*3.)
	# plt.title('Fakemod')
	# ps.savefig()
	# 
	# for IM in [L, (L>0)]:
	# 	plt.clf()
	# 	plt.imshow(IM, interpolation='nearest', origin='lower')
	# 	plt.gray()
	# 	wcs = faketim.getWcs()
	# 	xy = []
	# 	for src in cat:
	# 		x,y = wcs.positionToPixel(src.getPosition())
	# 		xy.append((x,y))
	# 	xy = np.array(xy)
	# 	ax = plt.axis()
	# 	plt.plot(xy[:,0], xy[:,1], 'r+')
	# 	plt.title('Source groups')
	# 	ps.savefig()

	# Find sources touching each group's (rectangular) ROI
	tgroups = {}
	for i,gslice in enumerate(gslices):
		gl = i+1
		tg = np.unique(L[gslice])
		tsrcs = []
		for g in tg:
			if not g in [gl,0]:
				if g in groups:
					tsrcs.extend(groups[g])
		tgroups[gl] = tsrcs


	# for i,gslice in enumerate(gslices):
	# 	if not (i+1) in groups:
	# 		continue
	# 
	# 	plt.clf()
	# 	plt.imshow(IM[gslice], interpolation='nearest', origin='lower')
	# 	plt.gray()
	# 	wcs = faketim.getWcs()
	# 	xy = []
	# 	y0,x0 = gslice[0].start, gslice[1].start
	# 	for src in cat:
	# 		x,y = wcs.positionToPixel(src.getPosition())
	# 		xy.append((x-x0,y-y0))
	# 	xy = np.array(xy)
	# 
	# 	ax = plt.axis()
	# 
	# 	plt.plot(xy[:,0], xy[:,1], 'r+')
	# 
	# 	I = np.array(groups[i+1])
	# 	if len(I):
	# 		plt.plot(xy[I,0], xy[I,1], 'g.')
	# 
	# 	I = np.array(tgroups[i+1])
	# 	if len(I):
	# 		plt.plot(xy[I,0], xy[I,1], 'gx')
	# 
	# 	ps.savefig()
	# 
	# 	plt.axis(ax)
	# 	ps.savefig()



	print 'Group size histogram:'
	ng = Counter()
	for g in groups.values():
		ng[len(g)] += 1
	kk = ng.keys()
	kk.sort()
	for k in kk:
		print '  ', k, 'sources:', ng[k], 'groups'

	nms = []
	tims = []
	allrois = {}
	badrois = {}

	if opt.threads:
		mp = multiproc(opt.threads)
	else:
		mp = multiproc(1)

	tims = mp.map(_read_l1b, T.filename)

	for imi,tim in enumerate(tims):
		tim.psf = w1psf
		H,W = tim.shape
		nin = 0
		for src in cat:
			x,y = tim.getWcs().positionToPixel(src.getPosition())
			if x >= 0 and y >= 0 and x < W and y < H:
				nin += 1
		print 'Number of sources inside image:', nin

		tractor = Tractor([tim], cat)
		tractor.freezeParam('images')
		### ??
		cat.setParams(cat0)

		pgroups = 0
		pobjs = 0

		for gi in range(len(gslices)):
			gl = gi
			# note, gslices is zero-indexed
			gslice = gslices[gl]
			gl += 1
			if not gl in groups:
				print 'Group', gl, 'not in groups array; skipping'
				continue
			gsrcs = groups[gl]
			tsrcs = tgroups[gl]

			# print 'Group number', (gi+1), 'of', len(Gorder), ', id', gl, ': sources', gsrcs
			# print 'sources in groups touching slice:', tsrcs

			# Convert from 'canonical' ROI to this image.
			yl,yh = gslice[0].start, gslice[0].stop
			xl,xh = gslice[1].start, gslice[1].stop
			x0,y0 = W-1,H-1
			x1,y1 = 0,0
			for x,y in [(xl,yl),(xh-1,yl),(xh-1,yh-1),(xl,yh-1)]:
				r,d = cowcs.pixelxy2radec(x+1, y+1)
				x,y = tim.getWcs().positionToPixel(RaDecPos(r,d))
				x = int(np.round(x))
				y = int(np.round(y))

				x = np.clip(x, 0, W-1)
				y = np.clip(y, 0, H-1)
				x0 = min(x0, x)
				y0 = min(y0, y)
				x1 = max(x1, x)
				y1 = max(y1, y)
			if x1 == x0 or y1 == y0:
				print 'Gslice', gslice, 'is completely outside this image'
				continue
			
			gslice = (slice(y0,y1+1), slice(x0, x1+1))

			if np.all(tim.getInvError()[gslice] == 0):
				print 'This whole object group has invvar = 0.'

				if not gl in badrois:
					badrois[gl] = {}
				badrois[gl][imi] = gslice

				continue

			if not gl in allrois:
				allrois[gl] = {}
			allrois[gl][imi] = gslice

			if not opt.individual:
				continue

			fullcat = tractor.catalog
			subcat = Catalog(*[fullcat[i] for i in gsrcs + tsrcs])
			for i in range(len(tsrcs)):
				subcat.freezeParam(len(gsrcs) + i)
			tractor.catalog = subcat

			print len(gsrcs), 'sources unfrozen; total', len(subcat)

			pgroups += 1
			pobjs += len(gsrcs)
			
			t0 = Time()
			tractor.optimize_forced_photometry(minsb=minsb, mindlnp=1.,
											   rois=[gslice])
			print 'optimize_forced_photometry took', Time()-t0

			tractor.catalog = fullcat

		# mod = tractor.getModelImage(0, minsb=minsb)
		# noise = np.random.normal(size=mod.shape)
		# noise[tim.getInvError() == 0] = 0.
		# nz = (tim.getInvError() > 0)
		# noise[nz] *= (1./tim.getInvError()[nz])
		# ima = dict(interpolation='nearest', origin='lower',
		# 		   vmin=tim.zr[0], vmax=tim.zr[1])
		# imchi = dict(interpolation='nearest', origin='lower',
		# 		   vmin=-5, vmax=5)
		# plt.clf()
		# plt.subplot(2,2,1)
		# plt.imshow(tim.getImage(), **ima)
		# plt.gray()
		# plt.subplot(2,2,2)
		# plt.imshow(mod, **ima)
		# plt.gray()
		# plt.subplot(2,2,3)
		# plt.imshow((tim.getImage() - mod) * tim.getInvError(), **imchi)
		# plt.gray()
		# plt.subplot(2,2,4)
		# plt.imshow(mod + noise, **ima)
		# plt.gray()
		# plt.suptitle('W1, scan %s, frame %i' % (sid, fnum))
		# ps.savefig()

		if opt.individual:
			print 'Photometered', pgroups, 'groups containing', pobjs, 'objects'
	
			cat.thawPathsTo(band)
			nm1 = np.array([src.getBrightness().getBand(band) for src in cat])
			nms.append(nm1)
	
			WW.nms = np.array(nms).T
			fn = opt.output % imi
			WW.writeto(fn)
			print 'Wrote', fn

	return dict(cat0=cat0, WW=WW, band=band, tims=tims,
				allrois=allrois, badrois=badrois, groups=groups,
				tgroups=tgroups, minsb=minsb,
				gslices=gslices, cat=cat)
Esempio n. 23
0
def main():
    if False:
        stars = [
            # David's nearby pairs of F stars
            (3900., 0., 118.37066, 52.527073),
            (3705., 0., 130.17654, 52.750081),
            # High stellar density
            #(0., 0., 270.0, 0.003),
            ]
        # Dustin's stars
        # (4472.001,	0.02514649,	246.47016,	19.066909),
        # (5196.53,   0.02490235, 240.09403,  37.404078),
        # (6179.05,   0.6324392,  310.47791,  57.523221),
        # (6021.875, 0.7000019, 150.52443, -0.478836),
        # (7757.096, 0.06507664, 305.11144, -12.957655),
        # (8088.685, 0.2436366, 253.11475, 11.60716),
        # (8395.096, 0.7563477, 188.34439, 63.442057),
        # (9201.74,  178, 93.971719, 0.56302169),
        # ]
    
        T = fits_table('stars2.fits')
        print 'Read stars:'
        T.about()
        stars.extend(zip(T.teff, T.teff_sigma, T.ra, T.dec))
    else:
        # This photoObj is unknown
        sdss = DR9(basedir=tempdir)
        sdss.useLocalTree()
        # near M87 / Virgo cluster
        run,camcol,field = 3836,2,258
        pofn = sdss.retrieve('photoObj', run, camcol, field)
        T = fits_table(pofn, columns=[
            'parent', 'objid', 'ra', 'dec', 'fracdev', 'objc_type', 'modelflux',
            'theta_dev', 'theta_deverr', 'ab_dev', 'ab_deverr', 'phi_dev_deg',
            'theta_exp', 'theta_experr', 'ab_exp', 'ab_experr', 'phi_exp_deg',
            'resolve_status', 'nchild', 'flags', 'objc_flags',
            'run','camcol','field','id'])
        print len(T), 'objects'
        T.cut(T.objc_type == 3)
        print len(T), 'galaxies'
        T.cut(T.nchild == 0)
        print len(T), 'children'
        T.cut(np.argsort(-T.modelflux[:,2]))

        # keep only one child in each blend family
        parents = set()
        keepi = []
        for i in range(len(T)):
            if T.parent[i] in parents:
                continue
            keepi.append(i)
            parents.add(T.parent[i])
        T.cut(np.array(keepi))
        print len(T), 'unique blend families'
        T = T[:25]
        stars = [(0,0,ra,dec) for ra,dec in zip(T.ra, T.dec)]

    plots = True
    
    if True:
        from astrometry.util.multiproc import *
        mp = multiproc(4)
        mp.map(_bounce_one_blob, stars)

    else:

        # stars = [ (0.,0., 131.59054,  0.66408610),
        #           (0.,0., 147.34576,  0.51657783 ),
        #           ]
        
        for teff, dteff, ra,dec in stars:
            try:
                fns = oneblob(ra,dec, teff, dteff)
            except:
                import traceback
                traceback.print_exc()
                continue
            if plots:
                stamp_pattern = 'stamp-%%s-%.4f-%.4f.fits' % (ra, dec)
                bands = 'ugriz'
                fns = ['cat'] + [stamp_pattern % band for band in bands]
                for j,fn in enumerate(fns[1:]):
                    print 'Filename', fn
                    F = fitsio.FITS(fn)
                    n = len(F) / 2
                    print 'n ext:', n
                    cols = int(np.ceil(np.sqrt(n)))
                    rows = int(np.ceil(n / float(cols)))
                    plt.clf()
                    for i,ext in enumerate(range(0, len(F), 2)):
                        plt.subplot(rows, cols, i+1)
                        hdr = F[ext].read_header()
                        dimshow(F[ext].read(), ticks=False)
                        plt.title('RCF %i/%i/%i' % (hdr['RUN'], hdr['CAMCOL'], hdr['FIELD']))
                    plt.suptitle('%s band' % bands[j])
                    plt.savefig(fn.replace('.fits','.png'))
                    F.close()
                    del F
Esempio n. 24
0
def create_detmaps(bands):
    mp = multiproc(8)
    #mp = multiproc()

    tile = '3524p000'

    # 1/4 x 1/4 subimage
    nsub = 4
    subx, suby = 0, 3
    chips = [30, 29, 24, 23, 22, 21, 43, 42]

    # 1/16 x 1/16 for faster testing
    nsub = 16
    subx, suby = 0, 12
    chips = [22, 43]
    import desi_common
    desi_common.N_subtiles = nsub
    
    cowcs = get_subtile_wcs(tile, subx, suby)

    # Insert imaging database here...
    paths = []
    for dirpath,dirs,files in os.walk('data/desi', followlinks=True):
        for fn in files:
            path = os.path.join(dirpath, fn)
            if path.endswith('.p.w.fits'):
                if any([('/C%02i/' % chip) in path for chip in chips]):
                    paths.append(path)
    print 'Found', len(paths), 'images'

    # Plug the WCS header cards into the output coadd files.
    f,tmpfn = tempfile.mkstemp()
    os.close(f)
    cowcs.write_to(tmpfn)
    hdr = fitsio.read_header(tmpfn)
    os.remove(tmpfn)

    for band in bands:

        print
        print 'Band', band

        wise = band.startswith('W')
        if not wise:
            fns = [fn for fn in paths if '%sband' % band in fn]
            wcsdir = 'data/decam/astrom'
            wcsfns = [os.path.join(wcsdir, os.path.basename(fn).replace('.fits','.wcs'))
                      for fn in fns]
        else:
            # HACK
            wisefn = 'unwise/352/3524p000/unwise-3524p000-%s-img-m.fits' % band.lower()
            fns = [wisefn]
            wcsfns = fns
            
        # resample image too (not just detection map?)
        do_img = True

        coH,coW = cowcs.get_height(), cowcs.get_width()
        codet = np.zeros((coH,coW))
        codet_iv = np.zeros((coH,coW))
        if do_img:
            coadd = np.zeros((coH, coW))
            coadd_iv = np.zeros((coH,coW))

        args = [(cowcs, fn, wcsfn, do_img, wise) for fn,wcsfn in zip(fns,wcsfns)]
        for i,A in enumerate(mp.map(_det_one, args)):
            if A is None:
                print 'Skipping input', fns[i]
                continue
            Yo,Xo,rdetmap,detmap_iv,rimg = A
            codet[Yo,Xo] += rdetmap * detmap_iv
            codet_iv[Yo,Xo] += detmap_iv
            if do_img:
                coadd[Yo,Xo] += rimg * detmap_iv
                coadd_iv[Yo,Xo] += detmap_iv

        codet /= np.maximum(codet_iv, 1e-16)
        fitsio.write('detmap-%s.fits' % band, codet.astype(np.float32), header=hdr, clobber=True)
        # no clobber -- append to file
        fitsio.write('detmap-%s.fits' % band, codet_iv.astype(np.float32), header=hdr)

        if do_img:
            coadd /= np.maximum(coadd_iv, 1e-16)
            fitsio.write('coadd-%s.fits' % band, coadd.astype(np.float32), header=hdr, clobber=True)
            # no clobber -- append to file
            fitsio.write('coadd-%s.fits' % band, coadd_iv.astype(np.float32), header=hdr)
Esempio n. 25
0
def stage_sims(**kwargs):

    W, H = 40, 40
    ra, dec = 0., 0.
    band = 'r'

    pixscale = 0.262
    ps = pixscale / 3600.
    wcs = Tan(ra, dec, W / 2. + 0.5, H / 2. + 0.5, -ps, 0., 0., ps, float(W),
              float(H))

    psf = None
    twcs = ConstantFitsWcs(wcs)
    photocal = LinearPhotoCal(1., band=band)

    np.random.seed(1000042)

    # survey target limiting mag: r=23.6, let's say 5-sig point source
    limit = 23.6

    data = np.zeros((H, W), np.float32)
    tim = Image(data=data,
                inverr=np.ones_like(data),
                psf=psf,
                wcs=twcs,
                photocal=photocal)
    tim.subwcs = wcs
    tim.band = band
    tim.skyver = (0, 0)
    tim.wcsver = (0, 0)
    tim.psfver = (0, 0)
    tim.plver = 0
    tim.dq = np.zeros(tim.shape, np.int16)
    tim.dq_bits = dict(satur=1)

    mp = multiproc()

    sourcetypes = ['E', 'D', 'S', 'C', 'P', '-', '+']

    ccmap = dict(E='r',
                 D='b',
                 S='c',
                 C='m',
                 P='g',
                 exp='r',
                 dev='b',
                 simp='c',
                 comp='m',
                 psf='g')
    ccmap['+'] = 'k'
    ccmap['-'] = '0.5'

    namemap = {
        'E': 'Exp',
        'D': 'deVauc',
        'C': 'composite',
        'P': 'PSF',
        'S': 'simple',
        '+': '>1 src',
        '-': 'No detection'
    }

    #

    #mag = 23.0
    #re = 0.45

    mag = np.arange(19.0, 23.5 + 1e-3, 0.5)
    #mag = np.array([19.])

    re = np.arange(0.1, 0.9 + 1e-3, 0.1)
    #re  = np.array([0.9])

    psfsig = 2.0
    N = 20
    #N = 1

    S = fits_table()
    for t in sourcetypes:
        S.set('frac_%s' % t, [])
    S.frac_U = []

    S.mag = []
    S.re = []
    S.imag = []
    S.ire = []
    S.psffwhm = []
    S.mods = []
    S.sig1 = []
    S.dchisq = []
    S.exp_re = []

    simk = 0

    for imag, mag_i in enumerate(mag):
        for ire, re_i in enumerate(re):

            #simk += 1
            #print 'simk', simk
            simk = 9
            np.random.seed(1000 + simk)

            S.mag.append(mag_i)
            S.re.append(re_i)
            S.imag.append(imag)
            S.ire.append(ire)

            flux = NanoMaggies.magToNanomaggies(mag_i)

            gal = ExpGalaxy(RaDecPos(ra, dec), NanoMaggies(**{band: flux}),
                            EllipseESoft(np.log(re_i), 0., 0.))

            var1 = psfsig**2
            psf = GaussianMixturePSF(1.0, 0., 0., var1, var1, 0.)
            tim.psf = psf
            tim.psf_sigma = psfsig

            # Set the per-pixel noise based on the PSF size!?!
            limitflux = NanoMaggies.magToNanomaggies(limit)
            psfnorm = 1. / (2. * np.sqrt(np.pi) * tim.psf_sigma)
            sig1 = limitflux / 5. * psfnorm
            tim.sig1 = sig1
            tim.inverr[:, :] = 1. / sig1

            print
            print 'Running mag=', mag_i, 're=', re_i
            print 'psf norm', psfnorm
            print 'limiting flux', limitflux
            print 'sig1:', sig1
            print 'flux:', flux

            tr = Tractor([tim], [gal])
            mod = tr.getModelImage(0)

            S.mods.append(mod + sig1 * np.random.normal(size=mod.shape))
            S.sig1.append(sig1)

            res = run_sim([tim], [gal],
                          N,
                          mods=[mod],
                          W=W,
                          H=H,
                          ra=ra,
                          dec=dec,
                          mp=mp,
                          bands=[band])

            T = res.T
            T.flux = T.flux_r
            T.fluxiv = T.fluxiv_r
            #catalog = res.TT

            print 'T.nsrcs:', T.nsrcs

            S.psffwhm.append(psfsig * 2.35 * pixscale)
            for t in sourcetypes:
                S.get('frac_%s' % t).append(
                    100. * np.count_nonzero(T.type == t) / float(len(T)))
            S.frac_U.append(100. * np.count_nonzero(T.nsrcs == 0) /
                            float(len(T)))

            TT = res.TT

            if 'dchisq' in TT.columns():
                dchisq = TT.dchisq
                S.dchisq.append(np.mean(dchisq, axis=0))
            else:
                S.dchisq.append(np.zeros(5))

            I = []
            if 'exp_shape_r' in TT.columns():
                I = np.flatnonzero(TT.exp_shape_r > 0)
            if len(I):
                S.exp_re.append(np.mean(TT.exp_shape_r[I]))
            else:
                S.exp_re.append(0.)

    S.to_np_arrays()
    print 'S:', len(S)

    rtn = {}
    for k in ['S', 'mag', 're', 'psfsig']:
        rtn[k] = locals()[k]
    return rtn
Esempio n. 26
0
def redqsos():
    # W4 detections without SDSS matches.
    T = fits_table('w4targets.fits')
    ps = None
    #ps = PlotSequence('redqso')

    arr = os.environ.get('PBS_ARRAYID')
    tag = '-b'
    if arr is not None:
        arr = int(arr)
        #chunk = 100
        chunk = 50
        T = T[arr * chunk: (arr+1) * chunk]
        print 'Cut to chunk', (arr * chunk)
        tag = '-%03i' % arr
    
    sdss = DR9()
    sdss.useLocalTree()
    sdss.saveUnzippedFiles('data/unzip')

    mp = multiproc(1)

    #lvl = logging.DEBUG
    lvl = logging.INFO
    logging.basicConfig(level=lvl, format='%(message)s', stream=sys.stdout)

    newcols = {}
    origcols = T.get_columns()
    
    T.done = np.zeros(len(T), np.uint8)

    version = get_svn_version()
    print 'SVN version info:', version

    hdr = fitsio.FITSHDR()
    hdr.add_record(dict(name='PHOT_VER', value=version['Revision'],
                        comment='SVN revision'))
    hdr.add_record(dict(name='PHOT_URL', value=version['URL'], comment='SVN URL'))
    hdr.add_record(dict(name='PHOT_DAT', value=datetime.datetime.now().isoformat(),
                        comment='forced phot run time'))

    for i,(ra,dec) in enumerate(zip(T.ra, T.dec)):
        print
        print i
        print 'RA,Dec', ra, dec
        r0,r1 = ra,ra
        d0,d1 = dec,dec

        #margin = 0.003
        # ~9 SDSS pixel half-box
        margin = 0.001
        
        dr = margin / np.cos(np.deg2rad((d0+d1)/2.))
        rlo = r0 - dr
        rhi = r1 + dr
        dlo = d0 - margin
        dhi = d1 + margin

        sky = True
        #sky = False

        t = T[np.array([i])]
        sdss_forced_phot(r0,r1,d0,d1, rlo, rhi, dlo, dhi, t, ps,
                         sdss=sdss, fitsky=sky)
        #print 'Columns:', t.get_columns()
        #t.about()
        
        for key in t.get_columns():
            if key in origcols:
                continue
            val = t.get(key)
            if not key in newcols:
                newcols[key] = np.zeros(len(T), val.dtype)
                T.set(key, newcols[key])
            print 'set', key, i, '=', val[0]
            newcols[key][i] = val[0]
        T.done[i] = 1

        #if i and i % 100 == 0:
        if False:
            fn = 'wisew4phot-interim%s.fits' % tag
            T.writeto(fn, header=hdr)
            print 'Wrote', fn
            
    T.writeto('wisew4phot%s.fits' % tag, header=hdr)
Esempio n. 27
0
                    if opt.empty:
                        # log file found
                        allfailed = False
                        break

            if not allfailed:
                continue
            print 'All jobs failed for sub', sub.id  #, 'via ssh failure'
            failedsubs.append(sub)
            failedjobs.append(failedjob)

        print 'Found total of', len(failedsubs), 'failed Submissions'
        if opt.rerun:
            from process_submissions import try_dosub, try_dojob
            if opt.threads is not None:
                mp = multiproc(opt.threads)
                args = []
                for j in failedjobs:
                    if j is None:
                        continue
                    args.append(j.id)  #, j.user_image))
                mp.map(bounce_try_dojob, args)

            else:
                for sub in failedsubs:
                    print 'Re-trying sub', sub.id
                    try_dosub(sub, 1)

    if opt.sub:
        sub = Submission.objects.all().get(id=opt.sub)
        print('Submission', sub)
Esempio n. 28
0
def qsocuts(SW):
	in1 = ( ((SW.gpsf - SW.ipsf) < 1.5) *
			(SW.optpsf > 17.) *
			(SW.optpsf < 22.) *
			((SW.optmod - SW.wise) > ((SW.gpsf - SW.ipsf) + 3)) *
			np.logical_or(SW.ispsf, (SW.optpsf - SW.optmod) < 0.1) )
	I = np.flatnonzero(in1)
	print('Selected', len(I))

	in2 = in1 * (SW.w1mag < 25.) * (SW.w2mag < 25.)
	I2 = np.flatnonzero(in2)
	print('With w1,w2 < 25:', len(I2))

	SW.w1rchi2 = SW.w1_prochi2 / SW.w1_pronpix

	in3 = in2 * (SW.w1rchi2 < 10.)
	I3 = np.flatnonzero(in3)
	print('And chi2/pix < 10:', len(I3))

	I = I2



	# Check against WISE catalog
	#wfn = 'w3-wise.fits'
	#WC = fits_table(wfn)

	# SDSS matched to WISE catalog
	swfn = 'eboss-w3-wise-cat-dr9.fits'
	#SWC = fits_table(swfn)


	S = fits_table('objs-eboss-w3-dr9.fits')
	print('Read', len(S), 'SDSS objects')
	wfn = 'w3-wise.fits'
	WC = fits_table(wfn)
	print('Read', len(WC), 'WISE catalog objects')

	R = 4./3600.
	I,J,d = match_radec(S.ra, S.dec, WC.ra, WC.dec, R, nearest=True)
	print(len(I), 'matches of SDSS to WISE catalog')
	SWC = S[I]
	for k in WC.columns():
		if k in ['ra','dec']:
			outkey = k+'_wise'
		else:
			outkey = k
		X = WC.get(k)
		SWC.set(outkey, X[J])
	SWC.writeto(swfn)

	SWC.gpsf = fluxtomag(SWC.psfflux[:,1])
	SWC.rpsf = fluxtomag(SWC.psfflux[:,2])
	SWC.ipsf = fluxtomag(SWC.psfflux[:,3])
	SWC.ispsf = (SWC.objc_type == 6)
	SWC.isgal = (SWC.objc_type == 3)

	SWC.optpsf = fluxtomag((SWC.psfflux[:,1] * 0.8 +
							SWC.psfflux[:,2] * 0.6 +
							SWC.psfflux[:,3] * 1.0) / 2.4)
	SWC.optmod = fluxtomag((SWC.modelflux[:,1] * 0.8 +
							SWC.modelflux[:,2] * 0.6 +
							SWC.modelflux[:,3] * 1.0) / 2.4)
	SWC.wise = fluxtomag((SWC.w1mpro * 1.0 +
						  SWC.w2mpro * 0.5) / 1.5)


	in1 = ( ((SWC.gpsf - SWC.ipsf) < 1.5) *
			(SWC.optpsf > 17.) *
			(SWC.optpsf < 22.) *
			((SWC.optpsf - SWC.wise) > ((SWC.gpsf - SWC.ipsf) + 3)) *
			np.logical_or(SWC.ispsf, (SWC.optpsf - SWC.optmod) < 0.1) )
	I = np.flatnonzero(in1)
	print('Selected', len(I), 'from WISE catalog')






	sys.exit(0)




	worstI = I[np.argsort(-SW.w1rchi2[I])]
	print('Worst:')

	mp = multiproc(1)

	for wi,i in enumerate(worstI):
		print('  %8.3f, %8.3f,  chi2/npix %g' % (SW.ra[i], SW.dec[i], SW.w1rchi2[i]))

		ra, dec = SW.ra[i], SW.dec[i]
		ri = int((ra  - r0) / (rr[1]-rr[0]))
		di = int((dec - d0) / (dd[1]-dd[0]))
		print('  ri %i, di %i' % (ri,di))
		
		if SW.w1rchi2[i] > 25:
			continue

		opt = myopts()
		wbasefn = 'eboss-w3-worst%04i-r%02i-d%02i' % (wi, ri,di)
		opt.picklepat = '%s-stage%%0i.pickle' % wbasefn
		opt.ps = wbasefn
		opt.minflux = None
		opt.bandnum = 1
		opt.osources = None
		opt.sources = 'objs-eboss-w3-dr9.fits'
		opt.ptsrc = False
		opt.pixpsf = False
		# opt.minsb = 0.05
		opt.minsb = 0.005
		opt.write = True
		opt.force = [205]
		opt.ri = ri
		opt.di = di

		import wise3
		import tractor
		pcat = []
		pcat.append(tractor.PointSource(RaDecPos(ra, dec), None))

		R = wise3.runtostage(205, opt, mp, rr[ri],rr[ri+1],dd[di],dd[di+1],
							 ttsuf='chi2/npix %g' % SW.w1rchi2[i],
							 pcat=pcat, addSky=True)


		### Try to use the stored solved values -- actually doesn't make things
		### much faster.
		# R = wise3.runtostage(103, opt, mp, rr[ri],rr[ri+1],dd[di],dd[di+1],
		# 					 ttsuf='chi2/npix %g' % SW.w1rchi2[i],
		# 					 pcat=pcat)
		# t = R['tractor']
		# T = fits_table('ebossw3-v4-r%02i-d%02i-w1.fits' % (ri, di))
		# assert(len(t.catalog) == len(T))
		# for i,src in enumerate(t.catalog):
		# 	print('Source', src)
		# 	assert(src.getPosition().ra  == T.ra [i])
		# 	assert(src.getPosition().dec == T.dec[i])
		# t.catalog.freezeParamsRecursive('*')
		# t.catalog.thawPathsTo('w1')
		# assert(len(t.catalog.getParams()) == len(T))
		# t.catalog.setParams(T.w1)
		# R2 = wise3.stage204(opt=opt, mp=mp, ri=opt.ri, di=opt.di, **R)
		# R2['ims1'] = R2['ims0']
		# ps = PlotSequence(wbasefn)
		# R3 = wise3.stage205(opt=opt, mp=mp, ri=opt.ri, di=opt.di, ps=ps, **R2)


	
	plt.clf()
	plt.hist(SW.w1mag, 100, range=(10,30), histtype='step', color='b', log=True)
	plt.hist(SW.w1mag[I], 100, range=(10,30), histtype='step', color='r', log=True)
	plt.xlabel('W1 mag')
	ylo,yhi = plt.ylim()
	plt.ylim(0.3, yhi)
	ps.savefig()

	plt.clf()
	plt.hist(SW.w2mag, 100, range=(10,30), histtype='step', color='b', log=True)
	plt.hist(SW.w2mag[I], 100, range=(10,30), histtype='step', color='r', log=True)
	plt.xlabel('W2 mag')
	ylo,yhi = plt.ylim()
	plt.ylim(0.3, yhi)
	ps.savefig()
	
	plt.clf()
	plt.hist(np.log10(SW.w1_prochi2 / SW.w1_pronpix), 100, range=(0,3),
			 log=True, histtype='step', color='b')
	plt.hist(np.log10(SW.w1_prochi2[I] / SW.w1_pronpix[I]), 100, range=(0,3),
			 log=True, histtype='step', color='r')
	plt.xlabel('log chi2/npix')
	ylo,yhi = plt.ylim()
	plt.ylim(0.3, yhi)
	ps.savefig()
Esempio n. 29
0
            gz = (100*len(bad)/len(T))
            if max(pg, pr, pz, gg, gr, gz) < 10:
                continue
            print '%3i' % pg, '% bad g ptsrc'
            print '%3i' % pr, '% bad r ptsrc'
            print '%3i' % pz, '% bad z ptsrc'
            print '%3i' % gg, '% bad g gal'
            print '%3i' % gr, '% bad r gal'
            print '%3i' % gz, '% bad z gal'

        # -> p202 through p242
    sys.exit(0)

    bricks.cut((bricks.dec > 20.1) * (bricks.dec < 24.3))
    print len(bricks), 'bricks to re-run'
    for brick in bricks.brickname:
        add_depth_tag(decals, brick, outdir, overwrite=True)


    if True:
        for brick in bricks.brickname:
            add_depth_tag(decals, brick, outdir)
    else:
        # totally I/O-bound; this doesn't help.
        from astrometry.util.multiproc import *
        mp = multiproc(24)
        mp.map(bounce_add_depth_tag,
               [(decals, brick, outdir) for brick in bricks.brickname])