Esempio n. 1
0
 def test_no_garbage(self):
     device, data_format = device_and_data_format()
     model = resnet50.ResNet50(data_format)
     optimizer = tf.train.GradientDescentOptimizer(0.1)
     with tf.device(device):
         images, labels = random_batch(2, data_format)
         gc.disable()
         # Warm up. Note that this first run does create significant amounts of
         # garbage to be collected. The hope is that this is a build-only effect,
         # and a subsequent training loop will create nothing which needs to be
         # collected.
         apply_gradients(model, optimizer,
                         compute_gradients(model, images, labels))
         gc.collect()
         previous_gc_debug_flags = gc.get_debug()
         gc.set_debug(gc.DEBUG_SAVEALL)
         for _ in range(2):
             # Run twice to ensure that garbage that is created on the first
             # iteration is no longer accessible.
             apply_gradients(model, optimizer,
                             compute_gradients(model, images, labels))
         gc.collect()
         # There should be no garbage requiring collection.
         self.assertEqual(0, len(gc.garbage))
         gc.set_debug(previous_gc_debug_flags)
         gc.enable()
Esempio n. 2
0
 def _benchmark_eager_apply(self,
                            label,
                            device_and_format,
                            defun=False,
                            execution_mode=None):
     with tfe.execution_mode(execution_mode):
         device, data_format = device_and_format
         model = resnet50.ResNet50(data_format)
         if defun:
             model.call = tfe.function(model.call)
         batch_size = 64
         num_burn = 5
         num_iters = 30
         with tf.device(device):
             images, _ = random_batch(batch_size, data_format)
             for _ in xrange(num_burn):
                 model(images, training=False).cpu()
             if execution_mode:
                 tfe.async_wait()
             gc.collect()
             start = time.time()
             for _ in xrange(num_iters):
                 model(images, training=False).cpu()
             if execution_mode:
                 tfe.async_wait()
             self._report(label, start, num_iters, device, batch_size,
                          data_format)
Esempio n. 3
0
    def benchmark_graph_train(self):
        for batch_size in [16, 32, 64]:
            with tf.Graph().as_default():
                np_images, np_labels = random_batch(batch_size)
                dataset = tf.data.Dataset.from_tensors(
                    (np_images, np_labels)).repeat()
                images, labels = tf.compat.v1.data.make_one_shot_iterator(
                    dataset).get_next()

                model = resnet50.ResNet50(data_format())
                logits = model(images, training=True)
                loss = tf.losses.softmax_cross_entropy(logits=logits,
                                                       onehot_labels=labels)
                optimizer = tf.train.GradientDescentOptimizer(
                    learning_rate=1.0)
                train_op = optimizer.minimize(loss)

                init = tf.global_variables_initializer()
                with tf.Session() as sess:
                    sess.run(init)
                    (num_burn, num_iters) = (5, 10)
                    for _ in range(num_burn):
                        sess.run(train_op)
                    start = time.time()
                    for _ in range(num_iters):
                        sess.run(train_op)
                    self._report('train', start, num_iters, batch_size)
Esempio n. 4
0
 def test_apply_with_pooling(self):
     device, data_format = device_and_data_format()
     model = resnet50.ResNet50(data_format,
                               include_top=False,
                               pooling='avg')
     with tf.device(device):
         images, _ = random_batch(2, data_format)
         output = model(images, training=False)
     self.assertEqual((2, 2048), output.shape)
Esempio n. 5
0
 def test_apply_no_top(self):
     device, data_format = device_and_data_format()
     model = resnet50.ResNet50(data_format, include_top=False)
     with tf.device(device):
         images, _ = random_batch(2, data_format)
         output = model(images, training=False)
     output_shape = ((2, 2048, 1, 1) if data_format == 'channels_first' else
                     (2, 1, 1, 2048))
     self.assertEqual(output_shape, output.shape)
Esempio n. 6
0
 def _apply(self, defun=False, execution_mode=None):
     device, data_format = device_and_data_format()
     model = resnet50.ResNet50(data_format)
     if defun:
         model.call = tfe.function(model.call)
     with tf.device(device), tfe.execution_mode(execution_mode):
         images, _ = random_batch(2, data_format)
         output = model(images, training=False)
         tfe.async_wait()
     self.assertEqual((2, 1000), output.shape)
Esempio n. 7
0
    def testApply(self):
        # Use small batches for tests because the OSS version runs
        # in constrained GPU environment with 1-2GB of memory.
        batch_size = 8
        with tf.Graph().as_default():
            images = tf.placeholder(tf.float32, image_shape(None))
            model = resnet50.ResNet50(data_format())
            predictions = model(images, training=False)

            init = tf.global_variables_initializer()

            with tf.Session() as sess:
                sess.run(init)
                np_images, _ = random_batch(batch_size)
                out = sess.run(predictions, feed_dict={images: np_images})
                self.assertAllEqual([batch_size, 1000], out.shape)
Esempio n. 8
0
 def _test_train(self, execution_mode=None):
     device, data_format = device_and_data_format()
     model = resnet50.ResNet50(data_format)
     tf.train.get_or_create_global_step()
     logdir = tempfile.mkdtemp()
     with tf.contrib.summary.create_file_writer(
             logdir, max_queue=0, name='t0').as_default(
             ), tf.contrib.summary.always_record_summaries():
         with tf.device(device), tfe.execution_mode(execution_mode):
             optimizer = tf.train.GradientDescentOptimizer(0.1)
             images, labels = random_batch(2, data_format)
             apply_gradients(model, optimizer,
                             compute_gradients(model, images, labels))
             self.assertEqual(320, len(model.variables))
             tfe.async_wait()
     events = summary_test_util.events_from_logdir(logdir)
     self.assertEqual(len(events), 2)
     self.assertEqual(events[1].summary.value[0].tag, 'loss')
Esempio n. 9
0
    def testTrainWithSummary(self):
        with tf.Graph().as_default():
            images = tf.placeholder(tf.float32,
                                    image_shape(None),
                                    name='images')
            labels = tf.placeholder(tf.float32, [None, 1000], name='labels')

            tf.train.get_or_create_global_step()
            logdir = tempfile.mkdtemp()
            with tf.contrib.summary.always_record_summaries():
                with tf.contrib.summary.create_file_writer(
                        logdir, max_queue=0, name='t0').as_default():
                    model = resnet50.ResNet50(data_format())
                    logits = model(images, training=True)
                    loss = tf.losses.softmax_cross_entropy(
                        logits=logits, onehot_labels=labels)
                    tf.contrib.summary.scalar(name='loss', tensor=loss)
                    optimizer = tf.train.GradientDescentOptimizer(
                        learning_rate=0.01)
                    train_op = optimizer.minimize(loss)

            init = tf.global_variables_initializer()
            self.assertEqual(321, len(tf.global_variables()))

            # Use small batches for tests because the OSS version runs
            # in constrained GPU environment with 1-2GB of memory.
            batch_size = 2
            with tf.Session() as sess:
                sess.run(init)
                sess.run(tf.contrib.summary.summary_writer_initializer_op())
                np_images, np_labels = random_batch(batch_size)
                sess.run(
                    [train_op, tf.contrib.summary.all_summary_ops()],
                    feed_dict={
                        images: np_images,
                        labels: np_labels
                    })

            events = summary_test_util.events_from_logdir(logdir)
            self.assertEqual(len(events), 2)
            self.assertEqual(events[1].summary.value[0].tag, 'loss')
Esempio n. 10
0
    def _benchmark_eager_train(self,
                               label,
                               make_iterator,
                               device_and_format,
                               defun=False,
                               execution_mode=None):
        with tfe.execution_mode(execution_mode):
            device, data_format = device_and_format
            for batch_size in self._train_batch_sizes():
                (images, labels) = random_batch(batch_size, data_format)
                model = resnet50.ResNet50(data_format)
                optimizer = tf.train.GradientDescentOptimizer(0.1)
                apply_grads = apply_gradients
                if defun:
                    model.call = tfe.function(model.call)
                    apply_grads = tfe.function(apply_gradients)

                num_burn = 3
                num_iters = 10
                with tf.device(device):
                    iterator = make_iterator((images, labels))
                    for _ in xrange(num_burn):
                        (images, labels) = iterator.next()
                        apply_grads(model, optimizer,
                                    compute_gradients(model, images, labels))
                    if execution_mode:
                        tfe.async_wait()
                    self._force_device_sync()
                    gc.collect()

                    start = time.time()
                    for _ in xrange(num_iters):
                        (images, labels) = iterator.next()
                        apply_grads(model, optimizer,
                                    compute_gradients(model, images, labels))
                    if execution_mode:
                        tfe.async_wait()
                    self._force_device_sync()
                    self._report(label, start, num_iters, device, batch_size,
                                 data_format)
Esempio n. 11
0
    def benchmark_graph_apply(self):
        with tf.Graph().as_default():
            images = tf.placeholder(tf.float32, image_shape(None))
            model = resnet50.ResNet50(data_format())
            predictions = model(images, training=False)

            init = tf.global_variables_initializer()

            batch_size = 64
            with tf.Session() as sess:
                sess.run(init)
                np_images, _ = random_batch(batch_size)
                num_burn, num_iters = (3, 30)
                for _ in range(num_burn):
                    sess.run(predictions, feed_dict={images: np_images})
                start = time.time()
                for _ in range(num_iters):
                    # Comparison with the eager execution benchmark in resnet50_test.py
                    # isn't entirely fair as the time here includes the cost of copying
                    # the feeds from CPU memory to GPU.
                    sess.run(predictions, feed_dict={images: np_images})
                self._report('apply', start, num_iters, batch_size)