Esempio n. 1
0
 def testSlotsUniqueEager(self):
   with context.eager_mode():
     v1 = resource_variable_ops.ResourceVariable(1.)
     v2 = resource_variable_ops.ResourceVariable(1.)
     opt = adam_gs_optimizer.AdamGSOptimizer(1.)
     opt.minimize(lambda: v1 + v2)
     # There should be two unique slot variables for v1 and v2 respectively.
     self.assertEqual(4, len(set(opt.variables())))
Esempio n. 2
0
 def testSparseDevicePlacement(self):
   for index_dtype in [dtypes.int32, dtypes.int64]:
     with self.cached_session(force_gpu=test.is_gpu_available()):
       # If a GPU is available, tests that all optimizer ops can be placed on
       # it (i.e. they have GPU kernels).
       var = variables.Variable([[1.0], [2.0]])
       indices = constant_op.constant([0, 1], dtype=index_dtype)
       gathered_sum = math_ops.reduce_sum(array_ops.gather(var, indices))
       optimizer = adam_gs_optimizer.AdamGSOptimizer(3.0)
       minimize_op = optimizer.minimize(gathered_sum)
       variables.global_variables_initializer().run()
       minimize_op.run()
Esempio n. 3
0
  def doTestSparse(self, use_resource=False):
    for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
      with self.cached_session():
        # Initialize variables for numpy implementation.
        m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
        var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
        grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
        var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
        grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype)

        if use_resource:
          global_step = resource_variable_ops.ResourceVariable(
              array_ops.zeros([], dtypes.int64))
          var0 = resource_variable_ops.ResourceVariable(var0_np)
          var1 = resource_variable_ops.ResourceVariable(var1_np)
        else:
          global_step = variables.Variable(array_ops.zeros([], dtypes.int64))
          var0 = variables.Variable(var0_np)
          var1 = variables.Variable(var1_np)
        grads0_np_indices = np.array([0, 1], dtype=np.int32)
        grads0 = ops.IndexedSlices(
            constant_op.constant(grads0_np),
            constant_op.constant(grads0_np_indices), constant_op.constant([2]))
        grads1_np_indices = np.array([0, 1], dtype=np.int32)
        grads1 = ops.IndexedSlices(
            constant_op.constant(grads1_np),
            constant_op.constant(grads1_np_indices), constant_op.constant([2]))
        opt = adam_gs_optimizer.AdamGSOptimizer(global_step=global_step)
        update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]),
                                     global_step=global_step)
        variables.global_variables_initializer().run()

        # Fetch params to validate initial values
        self.assertAllClose([1.0, 2.0], self.evaluate(var0))
        self.assertAllClose([3.0, 4.0], self.evaluate(var1))

        beta1_power, beta2_power = opt._get_beta_accumulators()

        # Run 3 steps of Adam
        for t in range(1, 4):
          self.assertAllCloseAccordingToType(0.9**t, self.evaluate(beta1_power))
          self.assertAllCloseAccordingToType(0.999**t,
                                             self.evaluate(beta2_power))
          update.run()

          var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0)
          var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1)

          # Validate updated params
          self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0))
          self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
Esempio n. 4
0
 def testSparseRepeatedIndices(self):
   for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
     with self.cached_session():
       repeated_index_global_step = variables.Variable(
           array_ops.zeros([], dtypes.int64))
       aggregated_global_step = variables.Variable(
           array_ops.zeros([], dtypes.int64))
       repeated_index_update_var = variables.Variable(
           [[1.0], [2.0]], dtype=dtype)
       aggregated_update_var = variables.Variable(
           [[1.0], [2.0]], dtype=dtype)
       grad_repeated_index = ops.IndexedSlices(
           constant_op.constant(
               [0.1, 0.1], shape=[2, 1], dtype=dtype),
           constant_op.constant([1, 1]),
           constant_op.constant([2, 1]))
       grad_aggregated = ops.IndexedSlices(
           constant_op.constant(
               [0.2], shape=[1, 1], dtype=dtype),
           constant_op.constant([1]),
           constant_op.constant([2, 1]))
       repeated_update = adam_gs_optimizer.AdamGSOptimizer(
           global_step=repeated_index_global_step).apply_gradients(
               [(grad_repeated_index, repeated_index_update_var)],
               global_step=repeated_index_global_step)
       aggregated_update = adam_gs_optimizer.AdamGSOptimizer(
           global_step=aggregated_global_step).apply_gradients(
               [(grad_aggregated, aggregated_update_var)],
               global_step=aggregated_global_step)
       variables.global_variables_initializer().run()
       self.assertAllClose(aggregated_update_var.eval(),
                           self.evaluate(repeated_index_update_var))
       for _ in range(3):
         repeated_update.run()
         aggregated_update.run()
         self.assertAllClose(aggregated_update_var.eval(),
                             self.evaluate(repeated_index_update_var))
Esempio n. 5
0
  def testSharing(self):
    for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
      with self.cached_session():
        global_step = variables.Variable(array_ops.zeros([], dtypes.int64))
        # Initialize variables for numpy implementation.
        m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
        var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
        grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
        var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
        grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype)

        var0 = variables.Variable(var0_np)
        var1 = variables.Variable(var1_np)
        grads0 = constant_op.constant(grads0_np)
        grads1 = constant_op.constant(grads1_np)
        opt = adam_gs_optimizer.AdamGSOptimizer(global_step=global_step)
        update1 = opt.apply_gradients(zip([grads0, grads1], [var0, var1]),
                                      global_step=global_step)
        update2 = opt.apply_gradients(zip([grads0, grads1], [var0, var1]),
                                      global_step=global_step)
        variables.global_variables_initializer().run()

        beta1_power, beta2_power = opt._get_beta_accumulators()

        # Fetch params to validate initial values
        self.assertAllClose([1.0, 2.0], self.evaluate(var0))
        self.assertAllClose([3.0, 4.0], self.evaluate(var1))

        # Run 3 steps of intertwined Adam1 and Adam2.
        for t in range(1, 4):
          self.assertAllCloseAccordingToType(0.9**t, self.evaluate(beta1_power))
          self.assertAllCloseAccordingToType(0.999**t,
                                             self.evaluate(beta2_power))
          if t % 2 == 0:
            update1.run()
          else:
            update2.run()

          var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0)
          var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1)

          # Validate updated params
          self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0))
          self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
Esempio n. 6
0
  def testTwoSessions(self):
    optimizer = adam_gs_optimizer.AdamGSOptimizer()

    with context.eager_mode():
      var0 = variables.Variable(np.array([1.0, 2.0]), name="v0")
      grads0 = constant_op.constant(np.array([0.1, 0.1]))
      optimizer.apply_gradients([(grads0, var0)])

    g = ops.Graph()
    with g.as_default():
      with session.Session():
        var0 = variables.Variable(np.array([1.0, 2.0]), name="v0")
        grads0 = constant_op.constant(np.array([0.1, 0.1]))
        optimizer.apply_gradients([(grads0, var0)])

    gg = ops.Graph()
    with gg.as_default():
      with session.Session():
        var0 = variables.Variable(np.array([1.0, 2.0]), name="v0")
        grads0 = constant_op.constant(np.array([0.1, 0.1]))

        # If the optimizer saves any state not keyed by graph the following line
        # fails.
        optimizer.apply_gradients([(grads0, var0)])
Esempio n. 7
0
  def doTestBasic(self, use_resource=False, use_callable_params=False):
    for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]):
      with self.session(graph=ops.Graph()):
        # Initialize variables for numpy implementation.
        m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
        var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
        grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
        var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
        grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype)

        if use_resource:
          global_step = resource_variable_ops.ResourceVariable(
              array_ops.zeros([], dtypes.int64), name="global_step_%d" % i)
          var0 = resource_variable_ops.ResourceVariable(
              var0_np, name="var0_%d" % i)
          var1 = resource_variable_ops.ResourceVariable(
              var1_np, name="var1_%d" % i)
        else:
          global_step = variables.Variable(array_ops.zeros([], dtypes.int64))
          var0 = variables.Variable(var0_np)
          var1 = variables.Variable(var1_np)
        grads0 = constant_op.constant(grads0_np)
        grads1 = constant_op.constant(grads1_np)

        learning_rate = lambda: 0.001
        beta1 = lambda: 0.9
        beta2 = lambda: 0.999
        epsilon = lambda: 1e-8
        if not use_callable_params:
          learning_rate = learning_rate()
          beta1 = beta1()
          beta2 = beta2()
          epsilon = epsilon()

        opt = adam_gs_optimizer.AdamGSOptimizer(global_step=global_step,
                                                learning_rate=learning_rate)
        update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]),
                                     global_step=global_step)
        opt_variables = opt.variables()
        beta1_power, beta2_power = opt._get_beta_accumulators()
        self.assertTrue(beta1_power is not None)
        self.assertTrue(beta2_power is not None)
        self.assertNotIn(beta1_power, opt_variables)
        self.assertNotIn(beta2_power, opt_variables)

        if not context.executing_eagerly():
          with ops.Graph().as_default():
            # Shouldn't return non-slot variables from other graphs.
            self.assertEqual(0, len(opt.variables()))
          self.evaluate(variables.global_variables_initializer())
          # Fetch params to validate initial values
          self.assertAllClose([1.0, 2.0], self.evaluate(var0))
          self.assertAllClose([3.0, 4.0], self.evaluate(var1))

        # Run 3 steps of Adam
        for t in range(1, 4):
          if not context.executing_eagerly():
            self.evaluate(update)
            self.assertAllCloseAccordingToType(
                0.9**(t + 1), self.evaluate(beta1_power))
            self.assertAllCloseAccordingToType(
                0.999**(t + 1), self.evaluate(beta2_power))
          else:
            if t > 1:
              opt.apply_gradients(zip([grads0, grads1], [var0, var1]),
                                  global_step=global_step)
              beta1_power, beta2_power = opt._get_beta_accumulators()
              self.assertAllCloseAccordingToType(
                  0.9**t, self.evaluate(beta1_power))
              self.assertAllCloseAccordingToType(
                  0.999**t, self.evaluate(beta2_power))

          var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0)
          var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1)

          # Validate updated params
          self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0))
          self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
          if use_resource:
            self.assertEqual("var0_%d/Adam:0" % (i,),
                             opt.get_slot(var=var0, name="m").name)