Esempio n. 1
0
 def test_fg_creation_custom_hdu(self, tmpdir, hdu):
     tmpdir, flist = tmpdir
     fg = FitsFileGroup(location=str(tmpdir / 'custom_hdu'), ext=hdu)
     assert_is_instance(fg, FitsFileGroup)
     assert_equal(len(fg), 10)
     assert_equal(sorted(fg.files), sorted(flist['custom_hdu']))
     for k in ('object', 'exptime', 'observer', 'filter'):
         assert_in(k, fg.summary.colnames)
     for i in fg.summary:
         assert_equal(i['object'], 'bias')
Esempio n. 2
0
    def test_simbad_catalog_get_simbad(self):
        # must be free of fluxdata
        s = self.cat.get_simbad()
        assert_is_instance(s, Simbad.__class__)
        for i in s.get_votable_fields():
            assert_not_in('fluxdata', i)

        # must contain flux data
        s = self.cat.get_simbad(band='V')
        assert_is_instance(s, Simbad.__class__)
        assert_in('fluxdata(V)', s.get_votable_fields())
Esempio n. 3
0
 def test_extract_header_nosip(self):
     header = fits.Header.fromstring(_base_header + _wcs_no_sip, sep='\n')
     h, wcs = extract_header_wcs(header)
     assert_is_instance(wcs, WCS)
     assert_equal(wcs.wcs.ctype[0], 'RA---TAN')
     assert_equal(wcs.wcs.ctype[1], 'DEC--TAN')
     assert_is_instance(h, fits.Header)
     for i in _comon_wcs_keys:
         assert_not_in(f'{i}1', h.keys())
         assert_not_in(f'{i}2', h.keys())
     assert_in('DATE-OBS', h.keys())
     assert_false(h is header)
     assert_not_equal(h, header)
Esempio n. 4
0
 def test_assert_in(self):
     assert_in(1, [1, 2, 3, 4, 5])
     assert_in('a', 'abc')
     with pytest.raises(AssertionError):
         assert_in('d', 'abc')
     with pytest.raises(AssertionError):
         assert_in(1, [2, 3, 4])
Esempio n. 5
0
def test_logger_remove_handler():
    mylog = logger.getChild('testing')
    msg = 'Some error happend here.'
    logs = []
    lh = log_to_list(mylog, logs)
    mylog.setLevel('DEBUG')
    mylog.error(msg)
    assert_is_instance(lh, ListHandler)
    assert_in(lh, mylog.handlers)
    mylog.removeHandler(lh)
    assert_not_in(lh, mylog.handlers)
    assert_equal(logs[0], msg)
    assert_equal(lh.log_list[0], msg)
    assert_equal(lh.log_list, logs)
Esempio n. 6
0
    def test_chunk_yielder_uncertainty(self):
        n = 100
        d = np.random.random((100, 100)).astype(np.float64)
        u = np.random.random((100, 100)).astype(np.float64)
        l = [FrameData(d, uncertainty=u, unit='adu') for i in range(n)]

        # simple sum with uncertainties
        comb = ImCombiner(max_memory=2e6, dtype=np.float64)
        comb._load_images(l)
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='sum'):
            i += 1
            for k, un in zip(chunk, unct):
                assert_in(k.shape, ((7, 100), (2, 100)))
                assert_almost_equal(k, d[slc])
                assert_almost_equal(un, u[slc])
                assert_is_instance(un, np.ma.MaskedArray)
        assert_equal(i, 15)

        # if a single uncertainty is empty, disable it
        logs = []
        lh = log_to_list(logger, logs, False)
        level = logger.getEffectiveLevel()
        logger.setLevel('DEBUG')

        l[5].uncertainty = None
        comb = ImCombiner(max_memory=2e6, dtype=np.float64)
        comb._load_images(l)
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='sum'):
            i += 1
            for k in chunk:
                assert_in(k.shape, ((7, 100), (2, 100)))
                assert_almost_equal(k, d[slc])
                assert_equal(unct, None)
        assert_equal(i, 15)
        assert_in(
            'One or more frames have empty uncertainty. '
            'Some features are disabled.', logs)
        logs.clear()
        logger.setLevel(level)
        logger.removeHandler(lh)
Esempio n. 7
0
    def test_chunk_yielder_f32(self):
        # using float32, the number of chunks are almost halved
        n = 100
        d = np.random.random((100, 100)).astype(np.float64)
        l = [FrameData(d, unit='adu') for i in range(n)]
        # data size = 4 000 000 = 4 bytes * 100 * 100 * 100
        # mask size = 1 000 000 = 1 bytes * 100 * 100 * 100
        # total size = 5 000 000

        comb = ImCombiner(max_memory=1e6, dtype=np.float32)
        comb._load_images(l)

        logs = []
        lh = log_to_list(logger, logs, False)
        level = logger.getEffectiveLevel()
        logger.setLevel('DEBUG')

        # for median, tot_size=5*4.5=22.5
        # xstep = 4, so n_chuks=25
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='median'):
            i += 1
            for k in chunk:
                assert_equal(k.shape, (4, 100))
                assert_almost_equal(k, d[slc])
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 25)
        assert_in('Splitting the images into 25 chunks.', logs)
        logs.clear()

        # for mean and sum, tot_size=5*3=15
        # xstep = 6, so n_chunks=16+1
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='mean'):
            i += 1
            for k in chunk:
                assert_in(k.shape, [(6, 100), (4, 100)])
                assert_almost_equal(k, d[slc])
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 17)
        assert_in('Splitting the images into 17 chunks.', logs)
        logs.clear()

        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='sum'):
            i += 1
            for k in chunk:
                assert_in(k.shape, [(6, 100), (4, 100)])
                assert_almost_equal(k, d[slc])
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 17)
        assert_in('Splitting the images into 17 chunks.', logs)
        logs.clear()

        # this should not split into chunks
        comb = ImCombiner(max_memory=1e8, dtype=np.float32)
        comb._load_images(l)
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='median'):
            i += 1
            for k in chunk:
                assert_equal(k.shape, (100, 100))
                assert_almost_equal(k, d)
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 1)
        assert_equal(len(logs), 0)
        logs.clear()

        # this should split in 300 chunks!
        # total_size = 4.5*5e6=22.5e6 = 225 chunks
        # x_step = 1
        # y_step = 45
        comb = ImCombiner(max_memory=1e5, dtype=np.float32)
        comb._load_images(l)
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='median'):
            i += 1
            for k in chunk:
                assert_in(k.shape, ((1, 45), (1, 10)))
                assert_almost_equal(k, d[slc])
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 300)
        assert_in('Splitting the images into 300 chunks.', logs)
        logs.clear()

        logger.setLevel(level)
        logger.removeHandler(lh)
Esempio n. 8
0
    def test_chunk_yielder_f64(self):
        n = 100
        d = np.random.random((100, 100)).astype(np.float64)
        l = [FrameData(d, unit='adu') for i in range(n)]
        # data size = 8 000 000 = 8 bytes * 100 * 100 * 100
        # mask size = 1 000 000 = 1 bytes * 100 * 100 * 100
        # total size = 9 000 000

        comb = ImCombiner(max_memory=1e6, dtype=np.float64)
        comb._load_images(l)

        logs = []
        lh = log_to_list(logger, logs, False)
        level = logger.getEffectiveLevel()
        logger.setLevel('DEBUG')

        # for median, tot_size=9*4.5=41
        # xstep = 2, so n_chuks=50
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='median'):
            i += 1
            for k in chunk:
                assert_equal(k.shape, (2, 100))
                assert_equal(k, d[slc])
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 50)
        assert_in('Splitting the images into 50 chunks.', logs)
        logs.clear()

        # for mean and sum, tot_size=9*3=27
        # xstep = 3, so n_chunks=33+1
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='mean'):
            i += 1
            for k in chunk:
                assert_in(k.shape, [(3, 100), (1, 100)])
                assert_equal(k, d[slc])
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 34)
        assert_in('Splitting the images into 34 chunks.', logs)
        logs.clear()

        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='sum'):
            i += 1
            for k in chunk:
                assert_in(k.shape, [(3, 100), (1, 100)])
                assert_equal(k, d[slc])
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 34)
        assert_in('Splitting the images into 34 chunks.', logs)
        logs.clear()

        # this should not split into chunks
        comb = ImCombiner(max_memory=1e8)
        comb._load_images(l)
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='median'):
            i += 1
            for k in chunk:
                assert_equal(k.shape, (100, 100))
                assert_equal(k, d)
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 1)
        assert_equal(len(logs), 0)
        logs.clear()

        # this should split in 400 chunks!
        comb = ImCombiner(max_memory=1e5)
        comb._load_images(l)
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='median'):
            i += 1
            for k in chunk:
                assert_equal(k.shape, (1, 25))
                assert_equal(k, d[slc])
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 400)
        assert_in('Splitting the images into 400 chunks.', logs)
        logs.clear()

        logger.setLevel(level)
        logger.removeHandler(lh)
Esempio n. 9
0
 def test_framemeta_get(self):
     a = FrameMeta({'A': 1, 'b': 'test', 'TesT': 'AaA'})
     res = a.get('test')
     assert_equal(res, 'AaA')
     assert_in('test', a)
     assert_in('TEST', a)
Esempio n. 10
0
def test_raise_north_angle():
    with pytest.raises(ValueError) as exc:
        wcs_from_coords(0, 0, 0, 0, 0, 'not a direction')
        assert_in('invalid value for north', str(exc.value))
Esempio n. 11
0
def test_invalid_op():
    frame1 = FrameData(np.zeros((10, 10)), unit='')
    frame2 = FrameData(np.zeros((10, 10)), unit='')
    with pytest.raises(ValueError) as exc:
        imarith(frame1, frame2, 'not an op')
        assert_in('not supported', str(exc.value))