def areaint(lats, lons): assert lats.size == lons.size, 'List of latitudes and longitudes are different sizes.' if isinstance(lats.iloc[0], u.Quantity): lat = np.array([lat.value for lat in lats] + [lats.iloc[0].value]) * u.deg lon = np.array([lon.value for lon in lons] + [lons.iloc[0].value]) * u.deg else: lat = np.append(lats, lats.iloc[0]) * u.deg lon = np.append(lons, lons.iloc[0]) * u.deg if lat.max() > 0: northern = True # Get colatitude (a measure of surface distance as an angle) and # azimuth of each point in segment from the center of mass. _, center_lat, center_lon = sph_center_of_mass(lat[:-1], lon[:-1]) if np.isnan(center_lat.value): center_lat = Latitude(0, unit=u.rad) if np.isnan(center_lon.value): center_lon = Longitude(0, unit=u.rad) # force centroid at the N or S pole # if northern: # center_lat = 90 * u.deg # else: # center_lat = -90 * u.deg # center_lon = 0 * u.deg colat = np.array([ distance(center_lon.to(u.deg), center_lat.to(u.deg), longi, latit).to( u.deg).value for latit, longi in zip(lat, lon) ]) * u.deg az = np.array([ azimuth(center_lon.to(u.deg), center_lat.to(u.deg), longi, latit).to( u.deg).value for latit, longi in zip(lat, lon) ]) * u.deg # Calculate step sizes, taking the complementary angle where needed daz = np.diff(az).to(u.rad) daz[np.where(daz > 180 * u.deg)] -= 360. * u.deg daz[np.where(daz < -180 * u.deg)] += 360. * u.deg # Determine average surface distance for each step deltas = np.diff(colat) / 2. colats = colat[0:-1] + deltas # Integral over azimuth is 1-cos(colatitudes) integrands = (1 - np.cos(colats)) * daz # Integrate and return the answer as a fraction of the unit sphere. # Note that the sum of the integrands will include a part of 4pi. return np.abs( np.nansum(integrands)) / (4 * np.pi * u.rad), center_lat, center_lon
def location(lat, lon, alt): # Reference location lon = Longitude(lon.strip(), u.degree, wrap_angle=180 * u.degree, copy=False) # noqa lat = Latitude(lat.strip(), u.degree, copy=False) height = u.Quantity(float(alt.strip()), u.m, copy=False) ref_location = EarthLocation(lat=lat.to(u.deg).value, lon=lon.to(u.deg).value, height=height.to(u.m).value) # noqa return ref_location
def gmst2time(gmst, time): """ Converts a Greenwich Mean Sidereal Time to UTC time, for a given date. Parameters ---------- gmst: ~float Greenwich Mean Siderial Time (hours) time : astropy.time.Time UT date+time Returns ------- astropy.time.Time object with closest UT day+time at which siderial time is correct. """ dgmst = Longitude(gmst - time2gmst(time)) return time+TimeDelta(dgmst.to(u.hourangle).value*0.9972695663/24., format='jd')
def pixel_to_data(self, x, y, origin=0): """ Convert a pixel coordinate to a data (world) coordinate by using `~astropy.wcs.WCS.wcs_pix2world`. Parameters ---------- x : float Pixel coordinate of the CTYPE1 axis. (Normally solar-x). y : float Pixel coordinate of the CTYPE2 axis. (Normally solar-y). origin : int Origin of the top-left corner. i.e. count from 0 or 1. Normally, origin should be 0 when passing numpy indices, or 1 if passing values from FITS header or map attributes. See `~astropy.wcs.WCS.wcs_pix2world` for more information. Returns ------- x : `~astropy.units.Quantity` Coordinate of the CTYPE1 axis. (Normally solar-x). y : `~astropy.units.Quantity` Coordinate of the CTYPE2 axis. (Normally solar-y). """ x, y = self.wcs.wcs_pix2world(x, y, origin) # If the wcs is celestial it is output in degress if self.wcs.is_celestial: x *= u.deg y *= u.deg else: x *= self.units.x y *= self.units.y x = Longitude(x, wrap_angle=180 * u.deg) y = Latitude(y) return x.to(self.units.x), y.to(self.units.y)
def gmst2time(gmst, time): """ Converts a Greenwich Mean Sidereal Time to UTC time, for a given date. Parameters ---------- gmst: ~float Greenwich Mean Siderial Time (hours) time : astropy.time.Time UT date+time Returns ------- astropy.time.Time object with closest UT day+time at which siderial time is correct. """ dgmst = Longitude(gmst - time2gmst(time)) return time + TimeDelta(dgmst.to(u.hourangle).value * 0.9972695663 / 24., format='jd', scale='utc')
def rot_hpc(x, y, tstart, tend, frame_time='synodic', rot_type='howard', **kwargs): """Given a location on the Sun referred to using the Helioprojective Cartesian co-ordinate system (typically quoted in the units of arcseconds) use the solar rotation profile to find that location at some later or earlier time. Note that this function assumes that the data was observed from the Earth or near Earth vicinity. Specifically, data from SOHO and STEREO observatories are not supported. Note also that the function does NOT use solar B0 and L0 values provided in source FITS files - these quantities are calculated. Parameters ---------- x : `~astropy.units.Quantity` Helio-projective x-co-ordinate in arcseconds (can be an array). y : `~astropy.units.Quantity` Helio-projective y-co-ordinate in arcseconds (can be an array). tstart : `sunpy.time.time` date/time to which x and y are referred. tend : `sunpy.time.time` date/time at which x and y will be rotated to. rot_type : {'howard' | 'snodgrass' | 'allen'} | howard: Use values for small magnetic features from Howard et al. | snodgrass: Use Values from Snodgrass et. al | allen: Use values from Allen, Astrophysical Quantities, and simpler equation. frame_time: {'sidereal' | 'synodic'} Choose type of day time reference frame. Returns ------- x : `~astropy.units.Quantity` Rotated helio-projective x-co-ordinate in arcseconds (can be an array). y : `~astropy.units.Quantity` Rotated helio-projective y-co-ordinate in arcseconds (can be an array). Examples -------- >>> import astropy.units as u >>> from sunpy.physics.transforms.differential_rotation import rot_hpc >>> rot_hpc( -570 * u.arcsec, 120 * u.arcsec, '2010-09-10 12:34:56', '2010-09-10 13:34:56') (<Angle -562.9105822671319 arcsec>, <Angle 119.31920621992195 arcsec>) Notes ----- SSWIDL code equivalent: http://hesperia.gsfc.nasa.gov/ssw/gen/idl/solar/rot_xy.pro . The function rot_xy uses arcmin2hel.pro and hel2arcmin.pro to implement the same functionality as this function. These two functions seem to perform inverse operations of each other to a high accuracy. The corresponding equivalent functions here are convert_hpc_hg and convert_hg_hpc respectively. These two functions seem to perform inverse operations of each other to a high accuracy. However, the values returned by arcmin2hel.pro are slightly different from those provided by convert_hpc_hg. This leads to very slightly different results from rot_hpc compared to rot_xy. """ # must have pairs of co-ordinates if np.array(x).shape != np.array(y).shape: raise ValueError('Input co-ordinates must have the same shape.') # Make sure we have enough time information to perform a solar differential # rotation # Start time dstart = parse_time(tstart) dend = parse_time(tend) interval = (dend - dstart).total_seconds() * u.s # Get the Sun's position from the vantage point at the start time vstart = kwargs.get("vstart", _calc_P_B0_SD(dstart)) # Compute heliographic co-ordinates - returns (longitude, latitude). Points # off the limb are returned as nan longitude, latitude = convert_hpc_hg(x.to(u.arcsec).value, y.to(u.arcsec).value, b0_deg=vstart["b0"].to(u.deg).value, l0_deg=vstart["l0"].to(u.deg).value, dsun_meters=(constants.au * sun.sunearth_distance(t=dstart)).value, angle_units='arcsec') longitude = Longitude(longitude, u.deg) latitude = Angle(latitude, u.deg) # Compute the differential rotation drot = diff_rot(interval, latitude, frame_time=frame_time, rot_type=rot_type) # Convert back to heliocentric cartesian in units of arcseconds vend = kwargs.get("vend", _calc_P_B0_SD(dend)) # It appears that there is a difference in how the SSWIDL function # hel2arcmin and the sunpy function below performs this co-ordinate # transform. newx, newy = convert_hg_hpc(longitude.to(u.deg).value + drot.to(u.deg).value, latitude.to(u.deg).value, b0_deg=vend["b0"].to(u.deg).value, l0_deg=vend["l0"].to(u.deg).value, dsun_meters=(constants.au * sun.sunearth_distance(t=dend)).value, occultation=False) newx = Angle(newx, u.arcsec) newy = Angle(newy, u.arcsec) return newx.to(u.arcsec), newy.to(u.arcsec)