Esempio n. 1
0
def identifyTces(time, flux, bls_durs_hrs=[1,2,4,8,12], minSnr=3, fracRemain=0.5, \
                 maxTces=10, minP=None, maxP=None):
    """
    Find highest point in the bls.
    remove that signal, median detrend again
    Find the next signal.
    Stop when less than half the original data set remains.
    Or, when depth of signal is less than snr*running_std 
    
    returns period, t0, depth, duration, snr for each signal found.
    """
    
    keepLooking = True
    counter = 0
    results = []
    stats = []
    bls_durs_day=np.array(bls_durs_hrs)/24
    
    t=time.copy()
    f=flux.copy()
    

    while keepLooking:
        
        bls_results = findBlsSignal(t, f, bls_durs_day, minP=minP, maxP=maxP)
        #print(bls_results)
        #simple ssnr because the BLS depth snr is acting strangely
        bls_results[4] = simpleSnr(t, f, bls_results)
        
        
        results.append(bls_results)
        bls = BoxLeastSquares(t,f)
        bls_stats = bls.compute_stats(bls_results[0], bls_results[3],bls_results[1])
        stats.append(bls_stats)
        #signal_snr = bls_stats['depth'][0]/bls_stats['depth'
        transit_mask = bls.transit_mask(t, bls_results[0],\
                                        bls_results[3]*1.1, bls_results[1])
        #plt.figure()
        #plt.plot(t,f,'ko',ms=3)
        
        t=t[~transit_mask]
        f=f[~transit_mask]
        
        #plt.plot(t,f,'r.')
        #Conditions to keep looking
        if (len(t)/len(time) > fracRemain) & \
               (bls_results[4] >= minSnr) & \
               (counter <= maxTces) :
                
            counter=counter + 1
            keepLooking = True
            
        else:          
            keepLooking = False
 

    return np.array(results), np.array(stats)
Esempio n. 2
0
    def __findBestSigma(self,
                        maxperiod,
                        window_length,
                        sigma_step,
                        sigma_max,
                        debug_mode=False):
        i = 3  #starting point
        self.sigArr = []
        self.lenArr = []
        self.maxdataArr = []

        while (sigma_max >= i):
            flat = self.rawlc.flatten(
                window_length=window_length).remove_outliers(sigma=i)
            model = BoxLeastSquares(flat.time, flat.flux, dy=0.01)
            testperiods = np.arange(1, maxperiod, 0.001)
            periodogram = model.power(testperiods, 0.16)
            maxID = np.argmax(periodogram.power)
            stat = model.compute_stats(periodogram.period[maxID],
                                       periodogram.duration[maxID],
                                       periodogram.transit_time[maxID])
            self.sigArr.append(sum(stat['per_transit_log_likelihood']))
            self.lenArr.append(len(stat['per_transit_log_likelihood']))
            if debug_mode:
                print([
                    i,
                    sum(stat['per_transit_log_likelihood']),
                    len(stat['per_transit_log_likelihood']),
                    periodogram.period[maxID]
                ])  #Debug
            i += sigma_step

        maxLLikeIndex = np.argwhere(self.lenArr == np.amax(self.lenArr))
        for i in maxLLikeIndex:
            self.maxdataArr.append(self.sigArr[i.item(0)])
        bestFit = np.argmax(self.maxdataArr) - 1
        if debug_mode:
            print("Index of LogLikelihoods")
            print(maxLLikeIndex)
            print("Best Sigma")
            print(bestFit + i)

        return bestFit + i
Esempio n. 3
0
    def get_ref_vals(lightcurve, p_ref=None):
        t = lightcurve.time
        y = lightcurve.flux
        dy = lightcurve.flux_err

        bls = BoxLeastSquares(t, y, dy)
        durations = [0.05, 0.1, 0.2]
        if p_ref is None:
            periodogram = bls.autopower(durations)
        else:
            periods = np.linspace(p_ref * 0.9, p_ref * 1.1, 5000)
            periodogram = bls.power(periods, durations)

        max_power = np.argmax(periodogram.power)
        stats = bls.compute_stats(periodogram.period[max_power],
                                  periodogram.duration[max_power],
                                  periodogram.transit_time[max_power])
        num_transits = len(stats['transit_times'])
        t0 = periodogram.transit_time[max_power]
        p = periodogram.period[max_power]

        return (t0, p, num_transits)
def ffi_lowess_detrend(save_path='',
                       sector=1,
                       target_ID_list=[],
                       pipeline='2min',
                       multi_sector=False,
                       use_peak_cut=False,
                       binned=False,
                       transit_mask=False,
                       injected_planet='user_defined',
                       injected_rp=0.1,
                       injected_per=8.0,
                       detrending='lowess_partial',
                       single_target_ID=['HIP 1113'],
                       n_bins=30):
    for target_ID in target_ID_list:
        try:
            lc_30min = lightkurve.lightcurve.TessLightCurve(time=[], flux=[])
            if multi_sector != False:
                sap_lc, pdcsap_lc = two_min_lc_download(target_ID,
                                                        sector=multi_sector[0],
                                                        from_file=False)
                lc_30min = pdcsap_lc
                nancut = np.isnan(lc_30min.flux) | np.isnan(lc_30min.time)
                lc_30min = lc_30min[~nancut]
                clean_time, clean_flux, clean_flux_err = clean_tess_lc(
                    lc_30min.time, lc_30min.flux, lc_30min.flux_err, target_ID,
                    multi_sector[0], save_path)
                lc_30min.time = clean_time
                lc_30min.flux = clean_flux
                lc_30min.flux_err = clean_flux_err
                for sector_num in multi_sector[1:]:
                    sap_lc_new, pdcsap_lc_new = two_min_lc_download(
                        target_ID, sector_num, from_file=False)
                    lc_30min_new = pdcsap_lc_new
                    nancut = np.isnan(lc_30min_new.flux) | np.isnan(
                        lc_30min_new.time)
                    lc_30min_new = lc_30min_new[~nancut]
                    clean_time, clean_flux, clean_flux_err = clean_tess_lc(
                        lc_30min_new.time, lc_30min_new.flux,
                        lc_30min_new.flux_err, target_ID, sector_num,
                        save_path)
                    lc_30min_new.time = clean_time
                    lc_30min_new.flux = clean_flux
                    lc_30min_new.flux_err = clean_flux_err
                    lc_30min = lc_30min.append(lc_30min_new)
#                    lc_30min.flux = lc_30min.flux.append(lc_30min_new.flux)
#                    lc_30min.time = lc_30min.time.append(lc_30min_new.time)
#                    lc_30min.flux_err = lc_30min.flux_err.append(lc_30min_new.flux_err)
            else:
                try:
                    if pipeline == 'DIA':
                        lc_30min, filename = diff_image_lc_download(
                            target_ID,
                            sector,
                            plot_lc=True,
                            save_path=save_path,
                            from_file=True)
                    elif pipeline == '2min':
                        sap_lc, pdcsap_lc = two_min_lc_download(
                            target_ID, sector=sector, from_file=False)
                        lc_30min = pdcsap_lc
                        nancut = np.isnan(lc_30min.flux) | np.isnan(
                            lc_30min.time)
                        lc_30min = lc_30min[~nancut]
                    elif pipeline == 'eleanor':
                        raw_lc, corr_lc, pca_lc = eleanor_lc_download(
                            target_ID,
                            sector,
                            from_file=False,
                            save_path=save_path,
                            plot_pca=False)
                        lc_30min = pca_lc
                    elif pipeline == 'from_file':
                        lcf = lightkurve.open(
                            'tess2019140104343-s0012-0000000212461524-0144-s_lc.fits'
                        )
                        lc_30min = lcf.PDCSAP_FLUX
                    elif pipeline == 'from_pickle':
                        with open('Original_time.pkl', 'rb') as f:
                            original_time = pickle.load(f)
                        with open('Original_flux.pkl', 'rb') as f:
                            original_flux = pickle.load(f)
                        lc_30min = lightkurve.lightcurve.TessLightCurve(
                            time=original_time, flux=original_flux)
                    elif pipeline == 'raw':
                        lc_30min = raw_FFI_lc_download(target_ID,
                                                       sector,
                                                       plot_tpf=False,
                                                       plot_lc=True,
                                                       save_path=save_path,
                                                       from_file=False)
                        pipeline = "raw"
                    else:
                        print('Invalid pipeline')

                except:
                    print('Lightcurve for {} not available'.format(target_ID))

            ################### Clean TESS lc pointing systematics ########################
            if multi_sector == False:
                clean_time, clean_flux, clean_flux_err = clean_tess_lc(
                    lc_30min.time, lc_30min.flux, lc_30min.flux_err, target_ID,
                    sector, save_path)
                lc_30min.time = clean_time
                lc_30min.flux = clean_flux
                lc_30min.flux_err = clean_flux_err

            ######################### Find rotation period ################################
            normalized_flux = np.array(lc_30min.flux) / np.median(
                lc_30min.flux)

            # From Lomb-Scargle
            freq = np.arange(0.04, 4.1, 0.00001)
            power = LombScargle(lc_30min.time, normalized_flux).power(freq)
            ls_fig = plt.figure()
            plt.plot(freq, power, c='k', linewidth=1)
            plt.xlabel('Frequency')
            plt.ylabel('Power')
            plt.title(
                '{} LombScargle Periodogram for original lc'.format(target_ID))
            #ls_plot.show(block=True)
            #        ls_fig.savefig(save_path + '{} - Lomb-Scargle Periodogram for original lc.png'.format(target_ID))
            plt.close(ls_fig)
            i = np.argmax(power)
            freq_rot = freq[i]
            p_rot = 1 / freq_rot
            print('Rotation Period = {:.3f}d'.format(p_rot))

            # From BLS
            durations = np.linspace(0.05, 1, 22) * u.day
            model = BoxLeastSquares(lc_30min.time * u.day, normalized_flux)
            results = model.autopower(durations, frequency_factor=1.0)
            rot_index = np.argmax(results.power)
            rot_period = results.period[rot_index]
            print("Rotation Period from BLS of original = {}d".format(
                rot_period))

            ########################### batman stuff ######################################
            if injected_planet != False:
                params = batman.TransitParams(
                )  #object to store transit parameters
                params.t0 = -10.0  #time of inferior conjunction
                params.per = 8.0
                params.rp = 0.1
                table_data = Table.read("BANYAN_XI-III_members_with_TIC.csv",
                                        format='ascii.csv')
                i = list(table_data['main_id']).index(target_ID)
                m_star = table_data['Stellar Mass'][i] * m_Sun
                r_star = table_data['Stellar Radius'][i] * r_Sun * 1000
                params.a = (((G * m_star * (params.per * 86400.)**2) /
                             (4. * (np.pi**2)))**(1. / 3)) / r_star
                if np.isnan(params.a) == True:
                    params.a = 17.  #semi-major axis (in units of stellar radii)
                params.inc = 90.
                params.ecc = 0.
                params.w = 90.  #longitude of periastron (in degrees)
                params.limb_dark = "nonlinear"  #limb darkening model
                params.u = [0.5, 0.1, 0.1, -0.1
                            ]  #limb darkening coefficients [u1, u2, u3, u4]

                if injected_planet == 'user_defined':
                    # Build planet from user specified parameters
                    params.per = injected_per  #orbital period (days)
                    params.rp = injected_rp  #planet radius (in units of stellar radii)
                    params.a = (((G * m_star * (params.per * 86400.)**2) /
                                 (4. * (np.pi**2)))**(1. / 3)) / r_star
                    if np.isnan(params.a) == True:
                        params.a = 17  # Recalculates a if period has changed
                    params.inc = 90.  #orbital inclination (in degrees)
                    params.ecc = 0.  #eccentricity
                else:
                    raise NameError('Invalid inputfor injected planet')

                # Defines times at which to calculate lc and models batman lc
                t = np.linspace(-13.9165035, 13.9165035, len(lc_30min.time))
                index = int(len(lc_30min.time) // 2)
                mid_point = lc_30min.time[index]
                t = lc_30min.time - lc_30min.time[index]
                m = batman.TransitModel(params, t)
                t += lc_30min.time[index]
                batman_flux = m.light_curve(params)
                batman_model_fig = plt.figure()
                plt.scatter(lc_30min.time, batman_flux, s=2, c='k')
                plt.xlabel("Time - 2457000 (BTJD days)")
                plt.ylabel("Relative flux")
                plt.title("batman model transit for {}R ratio".format(
                    params.rp))
                #batman_model_fig.savefig(save_path + "batman model transit for {}d {}R planet.png".format(params.per,params.rp))
                #plt.close(batman_model_fig)
                plt.show()

            ################################# Combining ###################################
            if injected_planet != False:
                combined_flux = np.array(lc_30min.flux) / np.median(
                    lc_30min.flux) + batman_flux - 1

                injected_transit_fig = plt.figure()
                plt.scatter(lc_30min.time, combined_flux, s=2, c='k')
                plt.xlabel("Time - 2457000 (BTJD days)")
                plt.ylabel("Relative flux")
                plt.title(
                    "{} with injected transits for a {}R {}d planet to star ratio."
                    .format(target_ID, params.rp, params.per))
                ax = plt.gca()
                for n in range(int(-1 * 8 / params.per),
                               int(2 * 8 / params.per + 2)):
                    ax.axvline(params.t0 + n * params.per + mid_point,
                               ymin=0.1,
                               ymax=0.2,
                               lw=1,
                               c='r')
                ax.axvline(params.t0 + lc_30min.time[index],
                           ymin=0.1,
                           ymax=0.2,
                           lw=1,
                           c='r')
                ax.axvline(params.t0 + params.per + lc_30min.time[index],
                           ymin=0.1,
                           ymax=0.2,
                           lw=1,
                           c='r')
                ax.axvline(params.t0 + 2 * params.per + lc_30min.time[index],
                           ymin=0.1,
                           ymax=0.2,
                           lw=1,
                           c='r')
                #            injected_transit_fig.savefig(save_path + "{} - Injected transits fig - Period {} - {}R transit.png".format(target_ID, params.per, params.rp))
                #            plt.close(injected_transit_fig)
                plt.show()

        ############################## Removing peaks #################################
            if injected_planet == False:
                combined_flux = np.array(lc_30min.flux) / np.median(
                    lc_30min.flux)
#            combined_flux = lc_30min.flux
            if use_peak_cut == True:
                peaks, peak_info = find_peaks(combined_flux,
                                              prominence=0.001,
                                              width=15)
                troughs, trough_info = find_peaks(-combined_flux,
                                                  prominence=-0.001,
                                                  width=15)
                flux_peaks = combined_flux[peaks]
                flux_troughs = combined_flux[troughs]
                amplitude_peaks = ((flux_peaks[0] - 1) +
                                   (1 - flux_troughs[0])) / 2
                print("Absolute amplitude of main variability = {}".format(
                    amplitude_peaks))
                peak_location_fig = plt.figure()
                plt.scatter(lc_30min.time, combined_flux, s=2, c='k')
                plt.plot(lc_30min.time[peaks], combined_flux[peaks], "x")
                plt.plot(lc_30min.time[troughs],
                         combined_flux[troughs],
                         "x",
                         c='r')
                #peak_location_fig.savefig(save_path + "{} - Peak location fig.png".format(target_ID))
                peak_location_fig.show()
                #                plt.close(peak_location_fig)

                near_peak_or_trough = [False] * len(combined_flux)

                for i in peaks:
                    for j in range(len(lc_30min.time)):
                        if abs(lc_30min.time[j] - lc_30min.time[i]) < 0.1:
                            near_peak_or_trough[j] = True

                for i in troughs:
                    for j in range(len(lc_30min.time)):
                        if abs(lc_30min.time[j] - lc_30min.time[i]) < 0.1:
                            near_peak_or_trough[j] = True

                near_peak_or_trough = np.array(near_peak_or_trough)

                t_cut = lc_30min.time[~near_peak_or_trough]
                flux_cut = combined_flux[~near_peak_or_trough]
                flux_err_cut = lc_30min.flux_err[~near_peak_or_trough]

                # Plot new cut version
                peak_cut_fig = plt.figure()
                plt.scatter(t_cut, flux_cut, c='k', s=2)
                plt.xlabel('Time - 2457000 [BTJD days]')
                plt.ylabel("Relative flux")
                plt.title(
                    '{} lc after removing peaks/troughs'.format(target_ID))
                ax = plt.gca()
                #peak_cut_fig.savefig(save_path + "{} - Peak cut fig.png".format(target_ID))
                peak_cut_fig.show()
#                plt.close(peak_cut_fig)
            else:
                t_cut = lc_30min.time
                flux_cut = combined_flux
                flux_err_cut = lc_30min.flux_err
                print('Flux cut skipped')

        ############################## Apply transit mask #########################

            if transit_mask == True:
                period = 8.138
                epoch = 1332.31
                duration = 0.15
                phase = np.mod(t_cut - epoch - period / 2, period) / period

                near_transit = [False] * len(flux_cut)

                for i in range(len(t_cut)):
                    if abs(phase[i] - 0.5) < duration / period:
                        near_transit[i] = True

                near_transit = np.array(near_transit)

                t_masked = t_cut[~near_transit]
                flux_masked = flux_cut[~near_transit]
                flux_err_masked = flux_err_cut[~near_transit]
                t_new = t_cut[near_transit]

                f = interpolate.interp1d(t_masked,
                                         flux_masked,
                                         kind='quadratic')

                flux_new = f(t_new)
                interpolated_fig = plt.figure()
                #                plt.scatter(t_masked, flux_masked, s = 2, c = 'k')
                plt.scatter(t_cut, flux_cut, s=2, c='k')
                plt.scatter(t_new, flux_new, s=2, c='r')
                plt.xlabel('Time - 2457000 [BTJD days]')
                plt.ylabel('Relative flux')
                #                interpolated_fig.savefig(save_path + "{} - Interpolated over transit mask fig.png".format(target_ID))

                t_transit_mask = np.concatenate((t_masked, t_new), axis=None)
                flux_transit_mask = np.concatenate((flux_masked, flux_new),
                                                   axis=None)

                sorted_order = np.argsort(t_transit_mask)
                t_transit_mask = t_transit_mask[sorted_order]
                flux_transit_mask = flux_transit_mask[sorted_order]

        ############################## LOWESS detrending ##############################

        # Full lc
            if detrending == 'lowess_full':
                full_lowess_flux = np.array([])
                if transit_mask == True:
                    lowess = sm.nonparametric.lowess(flux_transit_mask,
                                                     t_transit_mask,
                                                     frac=0.03)
                else:
                    lowess = sm.nonparametric.lowess(flux_cut,
                                                     t_cut,
                                                     frac=0.03)

                overplotted_lowess_full_fig = plt.figure()
                plt.scatter(t_cut, flux_cut, c='k', s=2)
                plt.plot(lowess[:, 0], lowess[:, 1])
                plt.title(
                    '{} lc with overplotted lowess full lc detrending'.format(
                        target_ID))
                plt.xlabel('Time - 2457000 [BTJD days]')
                plt.ylabel('Relative flux')
                #overplotted_lowess_full_fig.savefig(save_path + "{} lc with overplotted LOWESS full lc detrending.png".format(target_ID))
                plt.show()
                #                plt.close(overplotted_lowess_full_fig)

                residual_flux_lowess = flux_cut / lowess[:, 1]
                full_lowess_flux = np.concatenate(
                    (full_lowess_flux, lowess[:, 1]))

                lowess_full_residuals_fig = plt.figure()
                plt.scatter(t_cut, residual_flux_lowess, c='k', s=2)
                plt.title(
                    '{} lc after lowess full lc detrending'.format(target_ID))
                plt.xlabel('Time - 2457000 [BTJD days]')
                plt.ylabel('Relative flux')
                ax = plt.gca()
                #ax.axvline(params.t0+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
                #ax.axvline(params.t0+params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
                #ax.axvline(params.t0+2*params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
                #ax.axvline(params.t0-params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
                #lowess_full_residuals_fig.savefig(save_path + "{} lc after LOWESS full lc detrending.png".format(target_ID))
                plt.show()
                #plt.close(lowess_full_residuals_fig)

            # Partial lc
            if detrending == 'lowess_partial':
                time_diff = np.diff(t_cut)
                residual_flux_lowess = np.array([])
                time_from_lowess_detrend = np.array([])
                full_lowess_flux = np.array([])

                overplotted_detrending_fig = plt.figure()
                plt.scatter(t_cut, flux_cut, c='k', s=2)
                plt.xlabel('Time - 2457000 [BTJD days]')
                plt.ylabel("Normalized flux")
                plt.title(
                    '{} lc with overplotted detrending'.format(target_ID))

                low_bound = 0
                if pipeline == '2min':
                    n_bins = 450
                else:
                    n_bins = n_bins
                for i in range(len(t_cut) - 1):
                    if time_diff[i] > 0.1:
                        high_bound = i + 1

                        t_section = t_cut[low_bound:high_bound]
                        flux_section = flux_cut[low_bound:high_bound]
                        if len(t_section) >= n_bins:
                            if transit_mask == True:
                                lowess = sm.nonparametric.lowess(
                                    flux_transit_mask[low_bound:high_bound],
                                    t_transit_mask[low_bound:high_bound],
                                    frac=n_bins / len(t_section))
                            else:
                                lowess = sm.nonparametric.lowess(
                                    flux_section,
                                    t_section,
                                    frac=n_bins / len(t_section))
                            lowess_flux_section = lowess[:, 1]
                            plt.plot(t_section, lowess_flux_section, '-')

                            residuals_section = flux_section / lowess_flux_section
                            residual_flux_lowess = np.concatenate(
                                (residual_flux_lowess, residuals_section))
                            time_from_lowess_detrend = np.concatenate(
                                (time_from_lowess_detrend, t_section))
                            full_lowess_flux = np.concatenate(
                                (full_lowess_flux, lowess_flux_section))
                            low_bound = high_bound
                        else:
                            print('LOWESS skipped one gap at {}'.format(
                                t_section[-1]))

                # Carries out same process for final line (up to end of data)
                high_bound = len(t_cut)
                t_section = t_cut[low_bound:high_bound]
                flux_section = flux_cut[low_bound:high_bound]
                if transit_mask == True:
                    lowess = sm.nonparametric.lowess(
                        flux_transit_mask[low_bound:high_bound],
                        t_transit_mask[low_bound:high_bound],
                        frac=n_bins / len(t_section))
                else:
                    lowess = sm.nonparametric.lowess(flux_section,
                                                     t_section,
                                                     frac=n_bins /
                                                     len(t_section))
                lowess_flux_section = lowess[:, 1]
                plt.plot(t_section, lowess_flux_section, '-')
                #                if injected_planet != False:
                #                    overplotted_detrending_fig.savefig(save_path + "{} - Overplotted lowess detrending - partial lc - {}R {}d injected planet.png".format(target_ID, params.rp, params.per))
                #                else:
                #                    overplotted_detrending_fig.savefig(save_path + "{} - Overplotted lowess detrending - partial lc".format(target_ID))
                overplotted_detrending_fig.show()
                #                plt.close(overplotted_detrending_fig)

                residuals_section = flux_section / lowess_flux_section
                residual_flux_lowess = np.concatenate(
                    (residual_flux_lowess, residuals_section))
                time_from_lowess_detrend = np.concatenate(
                    (time_from_lowess_detrend, t_section))
                full_lowess_flux = np.concatenate(
                    (full_lowess_flux, lowess_flux_section))

                residuals_after_lowess_fig = plt.figure()
                plt.scatter(time_from_lowess_detrend,
                            residual_flux_lowess,
                            c='k',
                            s=2)
                plt.title('{} lc after LOWESS partial lc detrending'.format(
                    target_ID))
                plt.xlabel('Time - 2457000 [BTJD days]')
                plt.ylabel('Relative flux')
                #ax = plt.gca()
                #ax.axvline(params.t0+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
                #ax.axvline(params.t0+params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
                #ax.axvline(params.t0+2*params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
                #ax.axvline(params.t0-params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
                #                if injected_planet != False:
                #                    residuals_after_lowess_fig.savefig(save_path + "{} lc after LOWESS partial lc detrending - {}R {}d injected planet.png".format(target_ID, params.rp, params.per))
                #                else:
                #                    residuals_after_lowess_fig.savefig(save_path + "{} lc after LOWESS partial lc detrending".format(target_ID))
                residuals_after_lowess_fig.show()
#                plt.close(residuals_after_lowess_fig)

#    ###################### Periodogram Construction ##################

# Create periodogram
            durations = np.linspace(0.05, 1, 22) * u.day
            if detrending == 'lowess_full' or detrending == 'lowess_partial':
                BLS_flux = residual_flux_lowess
            else:
                BLS_flux = combined_flux
            model = BoxLeastSquares(t_cut * u.day, BLS_flux)
            results = model.autopower(durations,
                                      minimum_n_transit=3,
                                      frequency_factor=1.0)

            # Find the period and epoch of the peak
            index = np.argmax(results.power)
            period = results.period[index]
            #print(results.period)
            t0 = results.transit_time[index]
            duration = results.duration[index]
            transit_info = model.compute_stats(period, duration, t0)
            print(transit_info)

            epoch = transit_info['transit_times'][0]

            periodogram_fig, ax = plt.subplots(1, 1)

            # Highlight the harmonics of the peak period
            ax.axvline(period.value, alpha=0.4, lw=3)
            for n in range(2, 10):
                ax.axvline(n * period.value,
                           alpha=0.4,
                           lw=1,
                           linestyle="dashed")
                ax.axvline(period.value / n,
                           alpha=0.4,
                           lw=1,
                           linestyle="dashed")

            # Plot and save the periodogram
            ax.plot(results.period, results.power, "k", lw=0.5)
            ax.set_xlim(results.period.min().value, results.period.max().value)
            ax.set_xlabel("period [days]")
            ax.set_ylabel("log likelihood")
            #            ax.set_title('{} - BLS Periodogram after {} detrending - {}R {}d injected planet'.format(target_ID, detrending, params.rp, params.per))
            ax.set_title('{} - BLS Periodogram after {} detrending'.format(
                target_ID, detrending))
            #            periodogram_fig.savefig(save_path + '{} - BLS Periodogram after lowess partial detrending - {}R {}d injected planet.png'.format(target_ID, params.rp, params.per))
            #            periodogram_fig.savefig(save_path + '{} - BLS Periodogram after lowess partial detrending.png'.format(target_ID))
            #            plt.close(periodogram_fig)
            periodogram_fig.show()

            ################################## Phase folding ##########################
            # Find indices of 2nd and 3rd peaks of periodogram
            all_peaks = scipy.signal.find_peaks(results.power,
                                                width=5,
                                                distance=10)[0]
            all_peak_powers = results.power[all_peaks]
            sorted_power_indices = np.argsort(all_peak_powers)
            sorted_peak_powers = all_peak_powers[sorted_power_indices]
            #        sorted_peak_periods = results.period[sorted_power_indices]

            # Find info for 2nd largest peak in periodogram
            index_peak_2 = np.where(results.power == sorted_peak_powers[-2])[0]
            period_2 = results.period[index_peak_2[0]]
            t0_2 = results.transit_time[index_peak_2[0]]

            # Find info for 3rd largest peak in periodogram
            index_peak_3 = np.where(results.power == sorted_peak_powers[-3])[0]
            period_3 = results.period[index_peak_3[0]]
            t0_3 = results.transit_time[index_peak_3[0]]

            phase_fold_plot(
                t_cut, BLS_flux, period.value, t0.value, target_ID, save_path,
                '{} {} residuals folded by Periodogram Max ({:.3f} days)'.
                format(target_ID, detrending, period.value))
            period_to_test = p_rot
            t0_to_test = 1332
            period_to_test2 = period_2.value
            t0_to_test2 = t0_2.value
            period_to_test3 = period_3.value
            t0_to_test3 = t0_3.value
            phase_fold_plot(
                t_cut, BLS_flux, p_rot, t0_to_test, target_ID, save_path,
                '{} folded by rotation period ({} days)'.format(
                    target_ID, period_to_test))
            phase_fold_plot(
                t_cut, BLS_flux, period_to_test2, t0_to_test2, target_ID,
                save_path,
                '{} detrended lc folded by 2nd largest peak ({:0.4} days)'.
                format(target_ID, period_to_test2))
            phase_fold_plot(
                t_cut, BLS_flux, period_to_test3, t0_to_test3, target_ID,
                save_path,
                '{} detrended lc folded by 3rd largest peak ({:0.4} days)'.
                format(target_ID, period_to_test3))
            #variability_table.add_row([target_ID,p_rot,rot_period,amplitude_peaks])

            ############################# Eyeballing ##############################
            """
            Generate 2 x 2 eyeballing plot
            """
            eye_balling_fig, axs = plt.subplots(2,
                                                2,
                                                figsize=(16, 10),
                                                dpi=120)

            # Original DIA with injected transits setup
            axs[0, 0].scatter(lc_30min.time, combined_flux, s=1, c='k')
            axs[0, 0].set_ylabel('Normalized Flux')
            axs[0, 0].set_xlabel('Time')
            axs[0, 0].set_title('{} - {} light curve'.format(target_ID, 'DIA'))
            #for n in range(int(-1*8/params.per),int(2*8/params.per+2)):
            #    axs[0,0].axvline(params.t0+n*params.per+mid_point, ymin = 0.1, ymax = 0.2, lw=1, c = 'r')

            # Detrended figure setup
            axs[0, 1].scatter(t_cut,
                              BLS_flux,
                              c='k',
                              s=1,
                              label='{} residuals after {} detrending'.format(
                                  target_ID, detrending))
            #            axs[0,1].set_title('{} residuals after {} detrending - Sector {}'.format(target_ID, detrending, sector))
            axs[0, 1].set_title(
                '{} residuals after {} detrending - Sectors 14-18'.format(
                    target_ID, detrending))
            axs[0, 1].set_ylabel('Normalized Flux')
            axs[0, 1].set_xlabel('Time - 2457000 [BTJD days]')
            #            binned_time, binned_flux = bin(t_cut, BLS_flux, binsize=15, method='mean')
            #            axs[0,1].scatter(binned_time, binned_flux, c='r', s=4)
            #for n in range(int(-1*8/params.per),int(2*8/params.per+2)):
            #    axs[0,1].axvline(params.t0+n*params.per+mid_point, ymin = 0.1, ymax = 0.2, lw=1, c = 'r')

            # Periodogram setup
            axs[1, 0].plot(results.period, results.power, "k", lw=0.5)
            axs[1, 0].set_xlim(results.period.min().value,
                               results.period.max().value)
            axs[1, 0].set_xlabel("period [days]")
            axs[1, 0].set_ylabel("log likelihood")
            axs[1, 0].set_title(
                '{} - BLS Periodogram of residuals'.format(target_ID))
            axs[1, 0].axvline(period.value, alpha=0.4, lw=3)
            for n in range(2, 10):
                axs[1, 0].axvline(n * period.value,
                                  alpha=0.4,
                                  lw=1,
                                  linestyle="dashed")
                axs[1, 0].axvline(period.value / n,
                                  alpha=0.4,
                                  lw=1,
                                  linestyle="dashed")

            # Folded or zoomed plot setup
            epoch = t0.value
            period = period.value
            phase = np.mod(t_cut - epoch - period / 2, period) / period
            axs[1, 1].scatter(phase, BLS_flux, c='k', s=1)
            axs[1, 1].set_title('{} Lightcurve folded by {:0.4} days'.format(
                target_ID, period))
            axs[1, 1].set_xlabel('Phase')
            axs[1, 1].set_ylabel('Normalized Flux')
            #            binned_phase, binned_lc = bin(phase, BLS_flux, binsize=15, method='mean')
            #            plt.scatter(binned_phase, binned_lc, c='r', s=4)

            eye_balling_fig.tight_layout()
            #            eye_balling_fig.savefig(save_path + '{} - Full eyeballing fig.pdf'.format(target_ID))
            #            plt.close(eye_balling_fig)
            plt.show()

            ########################### ADDING INFO ROWS ######################


#            sensitivity_table.add_row([target_ID,sector,pipeline,params.per,params.a,params.rp,period,np.max(results.power),period_2.value,period_3.value])

        except RuntimeError:
            print('No DiffImage lc exists for {}'.format(target_ID))
        except:
            print('Some other error for {}'.format(target_ID))
    return t_cut, BLS_flux, phase, epoch, period
#        with open('Detrended_flux.pkl', 'wb') as f:
#            pickle.dump(BLS_flux, f, pickle.HIGHEST_PROTOCOL)
        model = BoxLeastSquares(t_cut * u.day, BLS_flux)
        #model = BLS(lc_30min.time*u.day,BLS_flux)
        results = model.autopower(durations,
                                  minimum_n_transit=3,
                                  frequency_factor=1.0)
        #        results = model.autopower(durations, minimum_n_transit=2,frequency_factor=5.0)

        # Find the period and epoch of the peak
        index = np.argmax(results.power)
        period = results.period[index]
        #print(results.period)
        t0 = results.transit_time[index]
        duration = results.duration[index]
        transit_info = model.compute_stats(period, duration, t0)
        print(transit_info)

        epoch = transit_info['transit_times'][0]

        #    periodogram_fig, ax = plt.subplots(1, 1, figsize=(8, 4))
        periodogram_fig, ax = plt.subplots(1, 1)

        # Highlight the harmonics of the peak period
        ax.axvline(period.value, alpha=0.4, lw=3)
        for n in range(2, 10):
            ax.axvline(n * period.value, alpha=0.4, lw=1, linestyle="dashed")
            ax.axvline(period.value / n, alpha=0.4, lw=1, linestyle="dashed")

        # Plot and save the periodogram
        ax.plot(results.period, results.power, "k", lw=0.5)
def ffi_lowess_detrend(
        save_path='/Users/mbattley/Documents/PhD/New detrending methods/Smoothing/lowess/QLP lcs/',
        sector=1,
        target_ID_list=[],
        pipeline='2min',
        multi_sector=False,
        use_TESSflatten=False,
        use_peak_cut=False,
        binned=False,
        transit_mask=False,
        injected_planet='user_defined',
        injected_rp=0.1,
        injected_per=8.0,
        detrending='lowess_partial',
        single_target_ID=['HIP 1113'],
        n_bins=30,
        filename=''):
    try:
        lc_30min = lightkurve.lightcurve.TessLightCurve(time=[], flux=[])
        if multi_sector != False:
            sap_lc, pdcsap_lc = two_min_lc_download(target_ID,
                                                    sector=multi_sector[0],
                                                    from_file=False)
            lc_30min = pdcsap_lc
            nancut = np.isnan(lc_30min.flux) | np.isnan(lc_30min.time)
            lc_30min = lc_30min[~nancut]
            clean_time, clean_flux, clean_flux_err = clean_tess_lc(
                lc_30min.time, lc_30min.flux, lc_30min.flux_err, target_ID,
                multi_sector[0], save_path)
            lc_30min.time = clean_time
            lc_30min.flux = clean_flux
            lc_30min.flux_err = clean_flux_err
            for sector_num in multi_sector[1:]:
                sap_lc_new, pdcsap_lc_new = two_min_lc_download(
                    target_ID, sector_num, from_file=False)
                lc_30min_new = pdcsap_lc_new
                nancut = np.isnan(lc_30min_new.flux) | np.isnan(
                    lc_30min_new.time)
                lc_30min_new = lc_30min_new[~nancut]
                clean_time, clean_flux, clean_flux_err = clean_tess_lc(
                    lc_30min_new.time, lc_30min_new.flux,
                    lc_30min_new.flux_err, target_ID, sector_num, save_path)
                lc_30min_new.time = clean_time
                lc_30min_new.flux = clean_flux
                lc_30min_new.flux_err = clean_flux_err
                lc_30min = lc_30min.append(lc_30min_new)
#                    lc_30min.flux = lc_30min.flux.append(lc_30min_new.flux)
#                    lc_30min.time = lc_30min.time.append(lc_30min_new.time)
#                    lc_30min.flux_err = lc_30min.flux_err.append(lc_30min_new.flux_err)
#                nancut = np.isnan(lc_30min.flux) | np.isnan(lc_30min.time)
#                lc_30min = lc_30min[~nancut]
        else:
            try:
                #                if pipeline == 'DIA':
                #                    lc_30min, filename = diff_image_lc_download(target_ID, sector, plot_lc = True, save_path = save_path, from_file = True)
                #                elif pipeline == '2min':
                #                    sap_lc, pdcsap_lc = two_min_lc_download(target_ID, sector = sector, from_file = False)
                #                    lc_30min = pdcsap_lc
                #                    nancut = np.isnan(lc_30min.flux) | np.isnan(lc_30min.time)
                #                    lc_30min = lc_30min[~nancut]
                #                elif pipeline == 'eleanor':
                #                    raw_lc, corr_lc, pca_lc = eleanor_lc_download(target_ID, sector, from_file = False, save_path = save_path, plot_pca = False)
                #                    lc_30min = pca_lc
                #                elif pipeline == 'from_file':
                ##                    sap_lc, pdcsap_lc = two_min_lc_download(target_ID, sector = sector, from_file = False)
                ##                    lcf = lightkurve.open('tess2019140104343-s0012-0000000212461524-0144-s_lc.fits')
                ##                    lc_30min = lcf.PDCSAP_FLUX
                #                    #filename = 'tess2019247000000-0000000224225541-111-cr_llc.fits'
                #                    filename = 'tess2019247000000-0000000146520535-111-cr_llc.fits'
                #                    lc_30min, kspsap_flux = get_lc_from_fits(filename)
                #                elif pipeline == 'from_pickle':
                #                    with open('Original_time.pkl','rb') as f:
                #                        original_time = pickle.load(f)
                #                    with open('Original_flux.pkl','rb') as f:
                #                        original_flux = pickle.load(f)
                #                    lc_30min = lightkurve.lightcurve.TessLightCurve(time = original_time,flux=original_flux)
                #                elif pipeline == 'raw':
                #                    lc_30min = raw_FFI_lc_download(target_ID, sector, plot_tpf = False, plot_lc = True, save_path = save_path, from_file = False)
                if pipeline == 'CDIPS':
                    lc_30min, target_ID, sector = get_lc_from_fits(
                        filename, source=pipeline, save_path=save_path)
                    print(target_ID)
#                elif pipeline == 'QLP':
#                    lc_30min, kspsap_flux = get_lc_from_fits(filename, source = pipeline)
                else:
                    print('Invalid pipeline')

            except:
                print('Lightcurve for {} not available'.format(target_ID))
#            try:
#                raw_lc, corr_lc, pca_lc = eleanor_lc_download(target_ID, sector, from_file = False, save_path = save_path, plot_pca = False)
#                lc_30min = pca_lc
#                pipeline = 'eleanor'
#            except RuntimeError:
#                print('Lightcurve for {} not available'.format(target_ID))
#        sap_lc, pdcsap_lc = two_min_lc_download(target_ID, sector)
#        lc_30min = pdcsap_lc
#        pipeline = '2min'

################### Clean TESS lc pointing systematics ########################
        if multi_sector == False:
            clean_time, clean_flux, clean_flux_err = clean_tess_lc(
                lc_30min.time, lc_30min.flux, lc_30min.flux_err, target_ID,
                sector, save_path)
            lc_30min.time = clean_time
            lc_30min.flux = clean_flux
            lc_30min.flux_err = clean_flux_err

        ######################### Find rotation period ################################
#            normalized_flux = np.array(lc_30min.flux)/np.median(lc_30min.flux)
        normalized_flux = lc_30min.flux
        #
        # From Lomb-Scargle
        freq = np.arange(0.04, 4.1, 0.00001)
        power = LombScargle(lc_30min.time, normalized_flux).power(freq)
        ls_fig = plt.figure()
        plt.plot(freq, power, c='k', linewidth=1)
        plt.xlabel('Frequency')
        plt.ylabel('Power')
        plt.title(
            '{} LombScargle Periodogram for original lc'.format(target_ID))
        #ls_plot.show(block=True)
        #        ls_fig.savefig(save_path + '{} - Lomb-Sacrgle Periodogram for original lc.png'.format(target_ID))
        plt.close(ls_fig)
        i = np.argmax(power)
        freq_rot = freq[i]
        p_rot = 1 / freq_rot
        print('Rotation Period = {:.3f}d'.format(p_rot))
        #
        #        # From BLS
        #        durations = np.linspace(0.05, 1, 22) * u.day
        #        model = BoxLeastSquares(lc_30min.time*u.day, normalized_flux)
        ##        model = BLS(lc_30min.time*u.day, BLS_flux)
        #        results = model.autopower(durations, frequency_factor=1.0)
        #        rot_index = np.argmax(results.power)
        #        rot_period = results.period[rot_index]
        #        rot_t0 = results.transit_time[rot_index]
        #        print("Rotation Period from BLS of original = {}d".format(rot_period))

        ########################### batman stuff ######################################
        #        if injected_planet != False:
        #    #        type_of_planet = 'Hot Jupiter'
        #    #        stellar_type = 'F or G'
        #            params = batman.TransitParams()       #object to store transit parameters
        #            params.t0 = -10.0                      #time of inferior conjunction
        #            params.per = 8.0
        #            params.rp = 0.1
        #            table_data = Table.read("BANYAN_XI-III_members_with_TIC.csv" , format='ascii.csv')
        #            i = list(table_data['main_id']).index(target_ID)
        #            m_star = table_data['Stellar Mass'][i]*m_Sun
        #            r_star = table_data['Stellar Radius'][i]*r_Sun*1000
        #            params.a = (((G*m_star*(params.per*86400.)**2)/(4.*(np.pi**2)))**(1./3))/r_star
        #            if np.isnan(params.a) == True:
        #                #For a: 25 for 10d; 17 for 8d; 10 for 4d; 4-8 (6) for 2 day; 2-5  for 1d; 1-3 (or 8?) for 0.5d
        #                params.a = 17. #semi-major axis (in units of stellar radii)
        #            params.inc = 90.
        #            params.ecc = 0.
        #            params.w = 90.                        #longitude of periastron (in degrees)
        #            params.limb_dark = "nonlinear"        #limb darkening model
        #            params.u = [0.5, 0.1, 0.1, -0.1]      #limb darkening coefficients [u1, u2, u3, u4]
        #
        #            if injected_planet == 'user_defined':
        #                # Build planet from user specified parameters
        #                params.per = injected_per                      #orbital period (days) - try 0.5, 1, 2, 4, 8 & 10d periods
        #                params.rp = injected_rp                       #planet radius (in units of stellar radii) - Try between 0.01 and 0.1 (F/G) or 0.025 to 0.18 (K/M)
        #                params.a = (((G*m_star*(params.per*86400.)**2)/(4.*(np.pi**2)))**(1./3))/r_star
        #                if np.isnan(params.a) == True:
        #                    params.a =  17                            # Recalculates a if period has changed
        #                params.inc = 90.                      #orbital inclination (in degrees)
        #                params.ecc = 0.                       #eccentricity
        #
        #            elif injected_planet == 'exo_archive':
        #                # Randomly inject planet from exoplanet archive
        #                exoplanet_data = Table.read("Exoplanet Archive Planets for injection.csv" , format='ascii.csv')
        #                pl_index = 760#random.randrange(1,1972,1)
        #                params.per = exoplanet_data['pl_orbper'][pl_index]
        #                params.rp = exoplanet_data['pl_radj'][pl_index]*r_Jup/(exoplanet_data['st_rad'][pl_index]*r_Sun)
        #                params.a = exoplanet_data['pl_orbsmax'][pl_index]*au/(exoplanet_data['st_rad'][pl_index]*r_Sun)
        #                if not np.isnan(exoplanet_data['pl_orbincl'][pl_index]):
        #                    params.inc = exoplanet_data['pl_orbincl'][pl_index]
        #                if not np.isnan(exoplanet_data['pl_orbeccen'][pl_index]):
        #                    params.ecc = exoplanet_data['pl_orbeccen'][pl_index]
        #
        #            elif injected_planet == 'set_period':
        #                params.per = 8.0
        #                params.rp = random.uniform(0,0.2)
        #                params.a = 17.
        #                params.inc = 90.
        #                params.ecc = 0.
        #
        #            elif injected_planet == 'set_depth':
        #                params.per = random.uniform(0.15,13.5)
        #                params.rp = 0.05
        #                params.a = 17.
        #                params.inc = 90.
        #                params.ecc = 0.
        #            else:
        #                raise NameError('Invalid inputfor injected planet')
        #
        #            # Defines times at which to calculate lc and models batman lc
        #            t = np.linspace(-13.9165035, 13.9165035, len(lc_30min.time))
        #            index = int(len(lc_30min.time)//2)
        #            mid_point = lc_30min.time[index]
        #            t = lc_30min.time - lc_30min.time[index]
        #            m = batman.TransitModel(params, t)
        #            t += lc_30min.time[index]
        #    #        print("About to compute flux")
        #            batman_flux = m.light_curve(params)
        #    #        print("Computed flux")
        #            batman_model_fig = plt.figure()
        #            plt.scatter(lc_30min.time, batman_flux, s = 2, c = 'k')
        #            plt.xlabel("Time - 2457000 (BTJD days)")
        #            plt.ylabel("Relative flux")
        #            plt.title("batman model transit for {}R ratio".format(params.rp))
        #            #batman_model_fig.savefig(save_path + "batman model transit for {}d {}R planet.png".format(params.per,params.rp))
        #            #plt.close(batman_model_fig)
        #            plt.show()

        ################################# Combining ###################################

        #            combined_flux = np.array(lc_30min.flux)/np.median(lc_30min.flux) + batman_flux -1

        #            injected_transit_fig = plt.figure()
        #            plt.scatter(lc_30min.time, combined_flux, s = 2, c = 'k')
        #            plt.xlabel("Time - 2457000 (BTJD days)")
        #            plt.ylabel("Relative flux")
        #    #        plt.title("{} with injected transits for a {} around a {} Star.".format(target_ID, type_of_planet, stellar_type))
        #            plt.title("{} with injected transits for a {}R {}d planet to star ratio.".format(target_ID, params.rp, params.per))
        #            ax = plt.gca()
        #            for n in range(int(-1*8/params.per),int(2*8/params.per+2)):
        #                ax.axvline(params.t0+n*params.per+mid_point, ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
        #            ax.axvline(params.t0+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
        #            ax.axvline(params.t0+params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
        #            ax.axvline(params.t0+2*params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
        #            #ax.axvline(params.t0-params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
        ##            injected_transit_fig.savefig(save_path + "{} - Injected transits fig - Period {} - {}R transit.png".format(target_ID, params.per, params.rp))
        ##            plt.close(injected_transit_fig)
        #            plt.show()

        ############################## Removing peaks #################################

        combined_flux = np.array(lc_30min.flux) / np.median(lc_30min.flux)
        #            combined_flux = lc_30min.flux
        if use_peak_cut == True:
            peaks, peak_info = find_peaks(combined_flux,
                                          prominence=0.001,
                                          width=15)
            #peaks = np.array([64, 381, 649, 964, 1273])
            troughs, trough_info = find_peaks(-combined_flux,
                                              prominence=-0.001,
                                              width=15)
            #troughs = np.array([211, 530, 795, 1113])
            #troughs = np.append(troughs, [370,1031])
            #print(troughs)
            flux_peaks = combined_flux[peaks]
            flux_troughs = combined_flux[troughs]
            amplitude_peaks = ((flux_peaks[0] - 1) + (1 - flux_troughs[0])) / 2
            print("Absolute amplitude of main variability = {}".format(
                amplitude_peaks))
            peak_location_fig = plt.figure()
            plt.scatter(lc_30min.time, combined_flux, s=2, c='k')
            plt.plot(lc_30min.time[peaks], combined_flux[peaks], "x")
            plt.plot(lc_30min.time[troughs],
                     combined_flux[troughs],
                     "x",
                     c='r')
            #peak_location_fig.savefig(save_path + "{} - Peak location fig.png".format(target_ID))
            peak_location_fig.show()
            #                plt.close(peak_location_fig)

            near_peak_or_trough = [False] * len(combined_flux)

            for i in peaks:
                for j in range(len(lc_30min.time)):
                    if abs(lc_30min.time[j] - lc_30min.time[i]) < 0.1:
                        near_peak_or_trough[j] = True

            for i in troughs:
                for j in range(len(lc_30min.time)):
                    if abs(lc_30min.time[j] - lc_30min.time[i]) < 0.1:
                        near_peak_or_trough[j] = True

            near_peak_or_trough = np.array(near_peak_or_trough)

            t_cut = lc_30min.time[~near_peak_or_trough]
            flux_cut = combined_flux[~near_peak_or_trough]
            flux_err_cut = lc_30min.flux_err[~near_peak_or_trough]
            #
            #    phase = np.mod(t-t0_rot,p_rot)/p_rot
            #    plt.figure()
            #    plt.scatter(phase,flux, c = 'k', s = 2)
            #    near_trough = (phase<0.1/p_rot) | (phase>1-0.1/p_rot)
            #    t_cut_bottom = t[~near_trough]
            #    flux_cut_bottom = combined_flux[~near_trough]
            #    flux_err_cut_bottom = lc_30min.flux_err[~near_trough]
            #
            #    phase = np.mod(t_cut_bottom-t0_rot,p_rot)/p_rot
            #    near_peak = (phase<0.5+0.1/p_rot) & (phase>0.5-0.1/p_rot)
            #    t_cut = t_cut_bottom[~near_peak]
            #    flux_cut = flux_cut_bottom[~near_peak]
            #    flux_err_cut = flux_err_cut_bottom[~near_peak]
            #
            #    cut_phase = np.mod(t_cut-t0_rot,p_rot)/p_rot
            #    plt.figure()
            #    plt.scatter(cut_phase, flux_cut, c='k', s=2)
            #
            # Plot new cut version
            peak_cut_fig = plt.figure()
            plt.scatter(t_cut, flux_cut, c='k', s=2)
            plt.xlabel('Time - 2457000 [BTJD days]')
            plt.ylabel("Relative flux")
            plt.title('{} lc after removing peaks/troughs'.format(target_ID))
            ax = plt.gca()
            #ax.axvline(params.t0+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
            #ax.axvline(params.t0+params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
            #ax.axvline(params.t0+2*params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
            #ax.axvline(params.t0-params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
            #peak_cut_fig.savefig(save_path + "{} - Peak cut fig.png".format(target_ID))
            peak_cut_fig.show()
#                plt.close(peak_cut_fig)
        else:
            t_cut = lc_30min.time
            flux_cut = combined_flux
            flux_err_cut = lc_30min.flux_err
            print('Flux cut skipped')

    ############################## Apply transit mask #########################

        if transit_mask == True:
            period = 8.138
            epoch = 1332.31
            duration = 0.15
            phase = np.mod(t_cut - epoch - period / 2, period) / period

            near_transit = [False] * len(flux_cut)

            for i in range(len(t_cut)):
                if abs(phase[i] - 0.5) < duration / period:
                    near_transit[i] = True

            near_transit = np.array(near_transit)

            t_masked = t_cut[~near_transit]
            flux_masked = flux_cut[~near_transit]
            flux_err_masked = flux_err_cut[~near_transit]
            t_new = t_cut[near_transit]

            f = interpolate.interp1d(t_masked, flux_masked, kind='quadratic')
            #                f = interpolate.BarycentricInterpolator(t_masked,flux_masked)

            flux_new = f(t_new)
            interpolated_fig = plt.figure()
            #                plt.scatter(t_masked, flux_masked, s = 2, c = 'k')
            plt.scatter(t_cut, flux_cut, s=2, c='k')
            plt.scatter(t_new, flux_new, s=2, c='r')
            plt.xlabel('Time - 2457000 [BTJD days]')
            plt.ylabel('Relative flux')
            #                interpolated_fig.savefig(save_path + "{} - Interpolated over transit mask fig.png".format(target_ID))

            t_transit_mask = np.concatenate((t_masked, t_new), axis=None)
            flux_transit_mask = np.concatenate((flux_masked, flux_new),
                                               axis=None)

            sorted_order = np.argsort(t_transit_mask)
            t_transit_mask = t_transit_mask[sorted_order]
            flux_transit_mask = flux_transit_mask[sorted_order]

    ############################## LOWESS detrending ##############################

    # Full lc
        if detrending == 'lowess_full':
            #t_cut = lc_30min.time
            #flux_cut = combined_flux
            full_lowess_flux = np.array([])
            if transit_mask == True:
                lowess = sm.nonparametric.lowess(flux_transit_mask,
                                                 t_transit_mask,
                                                 frac=0.03)
            else:
                lowess = sm.nonparametric.lowess(flux_cut, t_cut, frac=0.03)

        #     number of points = 20 at lowest, or otherwise frac = 20/len(t_section)

            overplotted_lowess_full_fig = plt.figure()
            plt.scatter(t_cut, flux_cut, c='k', s=2)
            plt.plot(lowess[:, 0], lowess[:, 1])
            plt.title(
                '{} lc with overplotted lowess full lc detrending'.format(
                    target_ID))
            plt.xlabel('Time - 2457000 [BTJD days]')
            plt.ylabel('Relative flux')
            #overplotted_lowess_full_fig.savefig(save_path + "{} lc with overplotted LOWESS full lc detrending.png".format(target_ID))
            plt.show()
            #                plt.close(overplotted_lowess_full_fig)

            residual_flux_lowess = flux_cut / lowess[:, 1]
            full_lowess_flux = np.concatenate((full_lowess_flux, lowess[:, 1]))

            lowess_full_residuals_fig = plt.figure()
            plt.scatter(t_cut, residual_flux_lowess, c='k', s=2)
            plt.title(
                '{} lc after lowess full lc detrending'.format(target_ID))
            plt.xlabel('Time - 2457000 [BTJD days]')
            plt.ylabel('Relative flux')
            ax = plt.gca()
            #ax.axvline(params.t0+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
            #ax.axvline(params.t0+params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
            #ax.axvline(params.t0+2*params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
            #ax.axvline(params.t0-params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
            #            lowess_full_residuals_fig.savefig(save_path + "{} lc after LOWESS full lc detrending.png".format(target_ID))
            plt.show()
#                plt.close(lowess_full_residuals_fig)

# Partial lc
        if detrending == 'lowess_partial':
            time_diff = np.diff(t_cut)
            residual_flux_lowess = np.array([])
            time_from_lowess_detrend = np.array([])
            full_lowess_flux = np.array([])

            overplotted_detrending_fig = plt.figure()
            plt.scatter(t_cut, flux_cut, c='k', s=2)
            plt.xlabel('Time - 2457000 [BTJD days]')
            plt.ylabel("Normalized flux")
            #plt.title('{} lc with overplotted detrending'.format(target_ID))

            low_bound = 0
            if pipeline == '2min':
                n_bins = 450
            else:
                n_bins = n_bins
            for i in range(len(t_cut) - 1):
                if time_diff[i] > 0.1:
                    high_bound = i + 1

                    t_section = t_cut[low_bound:high_bound]
                    flux_section = flux_cut[low_bound:high_bound]
                    #                    print(t_section)
                    if len(t_section) >= n_bins:
                        if transit_mask == True:
                            lowess = sm.nonparametric.lowess(
                                flux_transit_mask[low_bound:high_bound],
                                t_transit_mask[low_bound:high_bound],
                                frac=n_bins / len(t_section))
                        else:
                            lowess = sm.nonparametric.lowess(flux_section,
                                                             t_section,
                                                             frac=n_bins /
                                                             len(t_section))
    #                    lowess = sm.nonparametric.lowess(flux_section, t_section, frac=20/len(t_section))
                        lowess_flux_section = lowess[:, 1]
                        plt.plot(t_section, lowess_flux_section, '-')

                        residuals_section = flux_section / lowess_flux_section
                        residual_flux_lowess = np.concatenate(
                            (residual_flux_lowess, residuals_section))
                        time_from_lowess_detrend = np.concatenate(
                            (time_from_lowess_detrend, t_section))
                        full_lowess_flux = np.concatenate(
                            (full_lowess_flux, lowess_flux_section))
                        low_bound = high_bound
                    else:
                        print('Skipped one gap')

            # Carries out same process for final line (up to end of data)
            high_bound = len(t_cut)

            t_section = t_cut[low_bound:high_bound]
            flux_section = flux_cut[low_bound:high_bound]
            if transit_mask == True:
                lowess = sm.nonparametric.lowess(
                    flux_transit_mask[low_bound:high_bound],
                    t_transit_mask[low_bound:high_bound],
                    frac=n_bins / len(t_section))
            else:
                lowess = sm.nonparametric.lowess(flux_section,
                                                 t_section,
                                                 frac=n_bins / len(t_section))
#            lowess = sm.nonparametric.lowess(flux_section, t_section, frac=20/len(t_section))
            lowess_flux_section = lowess[:, 1]
            plt.plot(t_section, lowess_flux_section, '-')
            if injected_planet != False:
                overplotted_detrending_fig.savefig(
                    save_path +
                    "{} - Overplotted lowess detrending - partial lc - {}R {}d injected planet.png"
                    .format(target_ID, params.rp, params.per))
            else:
                overplotted_detrending_fig.savefig(
                    save_path +
                    "{} - Overplotted lowess detrending - partial lc.pdf".
                    format(target_ID))
#            overplotted_detrending_fig.show()
            plt.close(overplotted_detrending_fig)

            residuals_section = flux_section / lowess_flux_section
            residual_flux_lowess = np.concatenate(
                (residual_flux_lowess, residuals_section))
            time_from_lowess_detrend = np.concatenate(
                (time_from_lowess_detrend, t_section))
            full_lowess_flux = np.concatenate(
                (full_lowess_flux, lowess_flux_section))

            #    t_section = t_cut[83:133]
            residuals_after_lowess_fig = plt.figure()
            plt.scatter(time_from_lowess_detrend,
                        residual_flux_lowess,
                        c='k',
                        s=2)
            plt.title(
                '{} lc after LOWESS partial lc detrending'.format(target_ID))
            plt.xlabel('Time - 2457000 [BTJD days]')
            plt.ylabel('Relative flux')
            #ax = plt.gca()
            #ax.axvline(params.t0+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
            #ax.axvline(params.t0+params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
            #ax.axvline(params.t0+2*params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
            #ax.axvline(params.t0-params.per+lc_30min.time[index], ymin = 0.1, ymax = 0.2, lw=1, c = 'r')
            if injected_planet != False:
                residuals_after_lowess_fig.savefig(
                    save_path +
                    "{} lc after LOWESS partial lc detrending - {}R {}d injected planet.png"
                    .format(target_ID, params.rp, params.per))
            else:
                residuals_after_lowess_fig.savefig(
                    save_path +
                    "{} lc after LOWESS partial lc detrending.pdf".format(
                        target_ID))
#            residuals_after_lowess_fig.show()
            plt.close(residuals_after_lowess_fig)

    #    ########################## Periodogram Stuff ##################################

    # Create periodogram
        durations = np.linspace(0.05, 1, 22) * u.day
        if detrending == 'lowess_full' or detrending == 'lowess_partial':
            BLS_flux = residual_flux_lowess
        else:
            BLS_flux = combined_flux
#        with open('Detrended_time.pkl', 'wb') as f:
#            pickle.dump(t_cut, f, pickle.HIGHEST_PROTOCOL)
#        with open('Detrended_flux.pkl', 'wb') as f:
#            pickle.dump(BLS_flux, f, pickle.HIGHEST_PROTOCOL)
        model = BoxLeastSquares(t_cut * u.day, BLS_flux)
        #model = BLS(lc_30min.time*u.day,BLS_flux)
        results = model.autopower(durations,
                                  minimum_n_transit=3,
                                  frequency_factor=1.0)
        #results = model.autopower(durations, minimum_n_transit=2,frequency_factor=1.0)

        # Find the period and epoch of the peak
        index = np.argmax(results.power)
        period = results.period[index]
        #print(results.period)
        t0 = results.transit_time[index]
        duration = results.duration[index]
        transit_info = model.compute_stats(period, duration, t0)
        print(transit_info)

        epoch = transit_info['transit_times'][0]

        #    periodogram_fig, ax = plt.subplots(1, 1, figsize=(8, 4))
        periodogram_fig, ax = plt.subplots(1, 1)

        # Highlight the harmonics of the peak period
        ax.axvline(period.value, alpha=0.4, lw=3)
        for n in range(2, 10):
            ax.axvline(n * period.value, alpha=0.4, lw=1, linestyle="dashed")
            ax.axvline(period.value / n, alpha=0.4, lw=1, linestyle="dashed")

        # Plot and save the periodogram
        ax.plot(results.period, results.power, "k", lw=0.5)
        ax.set_xlim(results.period.min().value, results.period.max().value)
        ax.set_xlabel("period [days]")
        ax.set_ylabel("log likelihood")
        #        ax.set_title('{} - BLS Periodogram after {} detrending - {}R {}d injected planet'.format(target_ID, detrending, params.rp, params.per))
        ax.set_title('{} - BLS Periodogram after {} detrending'.format(
            target_ID, detrending))
        #        periodogram_fig.savefig(save_path + '{} - BLS Periodogram after lowess partial detrending - {}R {}d injected planet.png'.format(target_ID, params.rp, params.per))
        periodogram_fig.savefig(save_path +
                                '{} - BLS Periodogram after {} detrending.pdf'.
                                format(target_ID, detrending))
        plt.close(periodogram_fig)
        #        periodogram_fig.show()

        ##    ################################## Phase folding ##########################
        # Find indices of 2nd and 3rd peaks of periodogram
        all_peaks = scipy.signal.find_peaks(results.power,
                                            width=5,
                                            distance=10)[0]
        all_peak_powers = results.power[all_peaks]
        sorted_power_indices = np.argsort(all_peak_powers)
        sorted_peak_powers = all_peak_powers[sorted_power_indices]
        #        sorted_peak_periods = results.period[sorted_power_indices]

        # Find info for 2nd largest peak in periodogram
        index_peak_2 = np.where(results.power == sorted_peak_powers[-2])[0]
        period_2 = results.period[index_peak_2[0]]
        t0_2 = results.transit_time[index_peak_2[0]]

        # Find info for 3rd largest peak in periodogram
        index_peak_3 = np.where(results.power == sorted_peak_powers[-3])[0]
        period_3 = results.period[index_peak_3[0]]
        t0_3 = results.transit_time[index_peak_3[0]]

        #phase_fold_plot(t_cut, BLS_flux, 8, mid_point+params.t0, target_ID, save_path, '{} with injected 8 day transit folded by transit period - {}R ratio'.format(target_ID, params.rp))
        #phase_fold_plot(lc_30min.time, BLS_flux, rot_period.value, rot_t0.value, target_ID, save_path, '{} folded by rotation period'.format(target_ID))
        #print('Max BLS Period = {} days, t0 = {}'.format(period.value, t0.value))
        phase_fold_plot(
            t_cut, BLS_flux, period.value, t0.value, target_ID, save_path,
            '{} {} residuals folded by Periodogram Max ({:.3f} days)'.format(
                target_ID, detrending, period.value))
        #        period_to_test = p_rot
        #        t0_to_test = 1332
        period_to_test2 = period_2.value
        t0_to_test2 = t0_2.value
        period_to_test3 = period_3.value
        t0_to_test3 = t0_3.value
        #            period_to_test4 = 10.26
        #            t0_to_test4 = 1447.06
        #        phase_fold_plot(t_cut, BLS_flux, p_rot, t0_to_test, target_ID, save_path, '{} folded by rotation period ({} days)'.format(target_ID,period_to_test))
        phase_fold_plot(
            t_cut, BLS_flux, period_to_test2, t0_to_test2, target_ID,
            save_path,
            '{} detrended lc folded by 2nd largest peak ({:0.4} days)'.format(
                target_ID, period_to_test2))
        phase_fold_plot(
            t_cut, BLS_flux, period_to_test3, t0_to_test3, target_ID,
            save_path,
            '{} detrended lc folded by 3rd largest peak ({:0.4} days)'.format(
                target_ID, period_to_test3))
        #            phase_fold_plot(t_cut, BLS_flux, period_to_test4, t0_to_test4, target_ID, save_path, '{} detrended lc folded by {:0.4} days'.format(target_ID,period_to_test4))
        #print("Absolute amplitude of main variability = {}".format(amplitude_peaks))
        #print('Main Variability Period from Lomb-Scargle = {:.3f}d'.format(p_rot))
        #print("Main Variability Period from BLS of original = {}".format(rot_period))
        #variability_table.add_row([target_ID,p_rot,rot_period,amplitude_peaks])

        ############################# Eyeballing ##############################
        """
        Generate 2 x 2 eyeballing plot
        """
        eye_balling_fig, axs = plt.subplots(2, 2, figsize=(16, 10), dpi=120)

        # Original DIA with injected transits setup
        axs[0, 0].scatter(lc_30min.time, combined_flux, s=1, c='k')
        axs[0, 0].set_ylabel('Normalized Flux')
        axs[0, 0].set_xlabel('Time')
        axs[0, 0].set_title('{} - {} light curve'.format(target_ID, 'DIA'))
        #for n in range(int(-1*8/params.per),int(2*8/params.per+2)):
        #    axs[0,0].axvline(params.t0+n*params.per+mid_point, ymin = 0.1, ymax = 0.2, lw=1, c = 'r')

        # Detrended figure setup
        axs[0, 1].scatter(t_cut,
                          BLS_flux,
                          c='k',
                          s=1,
                          label='{} residuals after {} detrending'.format(
                              target_ID, detrending))
        #            axs[0,1].set_title('{} residuals after {} detrending - Sector {}'.format(target_ID, detrending, sector))
        axs[0, 1].set_title(
            '{} residuals after {} detrending - Sectors 14-18'.format(
                target_ID, detrending))
        axs[0, 1].set_ylabel('Normalized Flux')
        axs[0, 1].set_xlabel('Time - 2457000 [BTJD days]')
        #            binned_time, binned_flux = bin(t_cut, BLS_flux, binsize=15, method='mean')
        #            axs[0,1].scatter(binned_time, binned_flux, c='r', s=4)
        #for n in range(int(-1*8/params.per),int(2*8/params.per+2)):
        #    axs[0,1].axvline(params.t0+n*params.per+mid_point, ymin = 0.1, ymax = 0.2, lw=1, c = 'r')

        # Periodogram setup
        axs[1, 0].plot(results.period, results.power, "k", lw=0.5)
        axs[1, 0].set_xlim(results.period.min().value,
                           results.period.max().value)
        axs[1, 0].set_xlabel("period [days]")
        axs[1, 0].set_ylabel("log likelihood")
        axs[1,
            0].set_title('{} - BLS Periodogram of residuals'.format(target_ID))
        axs[1, 0].axvline(period.value, alpha=0.4, lw=3)
        for n in range(2, 10):
            axs[1, 0].axvline(n * period.value,
                              alpha=0.4,
                              lw=1,
                              linestyle="dashed")
            axs[1, 0].axvline(period.value / n,
                              alpha=0.4,
                              lw=1,
                              linestyle="dashed")

        # Folded or zoomed plot setup
        epoch = t0.value
        #            epoch = 1686.67
        period = period.value
        #epoch = t0_3.value
        #period = period_3.value
        #            print('Main epoch is {}'.format(t0.value+lc_30min.time[0]))
        phase = np.mod(t_cut - epoch - period / 2, period) / period
        axs[1, 1].scatter(phase, BLS_flux, c='k', s=1)
        axs[1, 1].set_title('{} Lightcurve folded by {:0.4} days'.format(
            target_ID, period))
        axs[1, 1].set_xlabel('Phase')
        axs[1, 1].set_ylabel('Normalized Flux')
        #axs[1,1].set_xlim(0.4,0.6)
        #            binned_phase, binned_lc = bin(phase, BLS_flux, binsize=15, method='mean')
        #            plt.scatter(binned_phase, binned_lc, c='r', s=4)

        eye_balling_fig.tight_layout()
        eye_balling_fig.savefig(
            save_path + '{} - Full eyeballing fig.pdf'.format(target_ID))
        plt.close(eye_balling_fig)
        #        plt.show()

        ########################### ADDING INFO ROWS ######################
        #            sensitivity_table.add_row([target_ID,sector,pipeline,params.per,params.a,params.rp,period,np.max(results.power),period_2.value,period_3.value])
        with open(save_path + 'Period_info_table.csv', 'a') as f:
            data_row = [
                target_ID, sector,
                np.max(results.power), period, epoch, period_2.value,
                period_3.value, p_rot
            ]
            writer = csv.writer(f, delimiter=',')
            # writer.writerow(["your", "header", "foo"])  # write header
            writer.writerow(data_row)

        ###################### BONUS MULTI-PLOTTING STUFF #################


#        orientation = 'vert'
#
#        if orientation == 'vert':
#            fig, (ax1, ax2, ax3) = plt.subplots(3, 1)
#        elif orientation == 'horiz':
#            fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
#        else:
#            print('Enter legitimate orientation')
#
##            fig, (ax1, ax2, ax3) = plt.subplots(3, 1)
##            fig.subplots_adjust(hspace=0.3)
#
#        ax1.scatter(t_cut,flux_cut, c = 'k', s = 1)
#        ax1.set_xlabel('Time - 2457000 [BTJD days]')
#        ax1.set_ylabel('Normalized Flux')
#        ax1.plot(t_cut, full_lowess_flux, '-')
#        ax1.set_xlim(t_cut[0],t_cut[-1])
#
#        ax2.plot(results.period, results.power, "k", lw=0.5)
#        ax2.set_xlim(results.period.min().value, results.period.max().value)
#        ax2.set_xlabel("period [days]")
#        ax2.set_ylabel("log likelihood")
#        ax2.axvline(period, alpha=0.4, lw=3)
#        for n in range(2, 10):
#            ax2.axvline(n*period, alpha=0.4, lw=1, linestyle="dashed")
#            ax2.axvline(period / n, alpha=0.4, lw=1, linestyle="dashed")
#
#        ax3.scatter(phase, BLS_flux, c='k', s=1)
#        ax3.set_xlabel('Phase')
#        ax3.set_ylabel('Normalized Flux')
#        ax3.set_xlim(0,1)
#        plt.text(0.5,0.5,'Folded by {}d'.format(period), fontsize=12)
#
#        plt.show()

################## Saving detrended lc to file  ###################

        detrended_lc = lightkurve.lightcurve.TessLightCurve(
            time=t_cut, flux=BLS_flux, flux_err=lc_30min.flux_err)
        detrended_lc.to_csv(
            save_path + 'Detrended_lcs/{}_detrended_lc.csv'.format(target_ID))

        ###################################################################

    except RuntimeError:
        print('No DiffImage lc exists for {}'.format(target_ID))
    except:
        print('Some other error for {}'.format(target_ID))
    return t_cut, BLS_flux, phase, epoch, period
Esempio n. 7
0
def run_BLS(fl):
    t, f, e = np.genfromtxt(fl, usecols=(0,1,2), unpack=True)
    mask    = cleaner(t,f)
    
    t = t[~mask]
    f = f[~mask]
    e = e[~mask]

    lc   = TessLightCurve(time=t, flux=f, flux_err=e).flatten(window_length=51, polyorder=2, niters=5)

    #Test Fill
    '''
    diffs = np.diff(lc.time)
    stdd  = np.nanstd(diffs)
    medd  = np.nanmedian(diffs)

    maskgaps = diffs > 0.2#np.abs(diffs-medd) > stdd
    maskgaps = np.concatenate((maskgaps,[False]))
    '''

    '''
    for mg in np.where(maskgaps)[0]:
        addtime = np.arange(lc.time[mg]+0.05, lc.time[mg+1], 0.05)
        addflux = np.random.normal(1, 8e-4, len(addtime))

        lc.time = np.concatenate((lc.time, addtime))
        lc.flux = np.concatenate((lc.flux, addflux))

    addorder = np.argsort(lc.time)
    lc.time = lc.time[addorder]
    lc.flux = lc.flux[addorder]
    '''

    #fmed = np.nanmedian(lc.flux)
    #fstd = np.nanstd(lc.flux)
    #stdm = lc.flux < 0.97#np.abs(lc.flux-fmed) > 3*fstd

    periods   = np.exp(np.linspace(np.log(args.min_period), np.log(args.max_period), 5000))
    durations = np.linspace(0.05, 0.15, 20)# * u.day
    model     = BLS(lc.time,lc.flux) if not args.TLS else transitleastsquares(lc.time.value, lc.flux, lc.flux_err)

    #result    = model.power(periods, durations, oversample=20)#, objective='snr')
    result    = model.power(period_min=args.min_period, oversampling_factor=2, n_transits_min=1, use_threads=1, show_progress_bar=False)
    #try:
    #result    = model.autopower(durations, frequency_factor=2.0, maximum_period=args.max_period)
    #except:
    #    print(fl)
    idx       = np.argmax(result.power)


    period = result.period[idx]
    t0     = result.transit_time[idx]
    dur    = result.duration[idx]
    depth  = result.depth[idx]
    snr    = result.depth_snr[idx]
    '''
    period = result.period
    t0     = result.T0
    dur    = result.duration
    depth  = 1 - result.depth
    snr    = result.snr
    '''


    try:
        stats  = model.compute_stats(period, dur, t0)
        depth_even = stats['depth_even'][0]
        depth_odd  = stats['depth_odd'][0]
        depth_half = stats['depth_half'][0]
        t0, t1     = stats['transit_times'][:2]
        ntra       = len(stats['transit_times'])
    except:
        depth_even = 0
        depth_odd  = 0
        depth_half = 0
        t1         = 0
        ntra       = 0

    if args.target is not None:
        return fl, period, t0, dur, depth, snr, depth_even, depth_odd, depth_half, t1, ntra, result.period, result.power, lc.time, lc.flux, diffs
    else:
        return fl, period, t0, dur, depth, snr, depth_even, depth_odd, depth_half, t1, ntra