Esempio n. 1
0
def fit_dlogM_mw(tab, sfrsd_tab, mltype='ring', mlb='i'):
    merge_tab = t.join(tab, sfrsd_tab, 'plateifu')
    is_agn = m.mask_from_maskbits(merge_tab['mngtarg3'], [1, 2, 3, 4])

    mlb_ix = totalmass.StellarMass.bands_ixs[mlb]
    absmag_sun_mlb = totalmass.StellarMass.absmag_sun[mlb_ix]

    logmass_in_ifu = merge_tab['mass_in_ifu'].to(u.dex(u.Msun))
    logmass_in_ifu_lw = merge_tab['ml_fluxwt'] + merge_tab[f'logsollum_in_ifu_{mlb}']
    merge_tab['dlogmass_lw'] = logmass_in_ifu - logmass_in_ifu_lw
    std_atten_mwtd = merge_tab['std_atten_mwtd']
    mean_atten_mwtd = merge_tab['mean_atten_mwtd']
    ha_corr = np.exp(merge_tab['mean_atten_mwtd'] * (6563 / 5500)**-1.3)
    sfrsd = merge_tab['sigma_sfr'] * ha_corr * u.Msun / u.yr / u.pc**2
    outer_mass = (merge_tab[f'outerml_{mltype}'] + \
                  merge_tab[f'logsollum_outer_{mlb}']).to(u.Msun)
    mass_pca = merge_tab['mass_in_ifu'].to(u.Msun) + outer_mass
    ssfrsd = sfrsd / mass_pca
    merge_tab['log_ssfrsd'] = ssfrsd.to(u.dex(ssfrsd.unit))
    merge_tab['log_ssfrsd'][~np.isfinite(merge_tab['log_ssfrsd'])] = np.nan * merge_tab['log_ssfrsd'].unit

    ols = OLS(
        endog=np.array(merge_tab['dlogmass_lw'][~is_agn]),
        exog=sm_add_constant(
            t.Table(merge_tab['mean_atten_mwtd', 'std_atten_mwtd', 'log_ssfrsd'])[~is_agn].to_pandas(),
            prepend=False),
        hasconst=True, missing='drop')

    olsfit = ols.fit()

    return olsfit
Esempio n. 2
0
def fit_dlogM_mw(tab, sfrsd_tab, mltype='ring', mlb='i'):
    merge_tab = t.join(tab, sfrsd_tab, 'plateifu')
    is_agn = m.mask_from_maskbits(merge_tab['mngtarg3'], [1, 2, 3, 4])

    mlb_ix = totalmass.StellarMass.bands_ixs[mlb]
    absmag_sun_mlb = totalmass.StellarMass.absmag_sun[mlb_ix]

    logmass_in_ifu = merge_tab['mass_in_ifu'].to(u.dex(u.Msun))
    logmass_in_ifu_lw = merge_tab['ml_fluxwt'] + merge_tab['ifu_absmag'][:, mlb_ix].to(
        u.dex(m.bandpass_sol_l_unit), totalmass.bandpass_flux_to_solarunits(absmag_sun_mlb))
    merge_tab['dlogmass_lw'] = logmass_in_ifu - logmass_in_ifu_lw
    ha_corr = np.exp(merge_tab['mean_atten_mwtd'] * (6563 / 5500)**-1.3)
    sfrsd = merge_tab['sigma_sfr'] * ha_corr * u.Msun / u.yr / u.pc**2
    mass_pca = merge_tab['mass_in_ifu'] + merge_tab['outer_mass_{}'.format(mltype)]
    ssfrsd = sfrsd / mass_pca
    merge_tab['log_ssfrsd'] = ssfrsd.to(u.dex(ssfrsd.unit))
    merge_tab['log_ssfrsd'][~np.isfinite(merge_tab['log_ssfrsd'])] = np.nan * merge_tab['log_ssfrsd'].unit

    ols = OLS(
        endog=np.array(merge_tab['dlogmass_lw'][~is_agn]),
        exog=sm_add_constant(
            t.Table(merge_tab['mean_atten_mwtd', 'std_atten_mwtd', 'log_ssfrsd'])[~is_agn].to_pandas(),
            prepend=False),
        hasconst=True, missing='drop')

    olsfit = ols.fit()

    return olsfit
Esempio n. 3
0
def compare_missing_mass(tab, mlb='i', cb1='g', cb2='r'):
    '''make figure showing effect of aperture correction on total mass
    
    Figure shows P+ (red) and S (blue) samples,
    with their integrated color, difference between aperture-corrected
    masses using CMLR and ring method
    
    Parameters
    ----------
    tab : astropy.table.Table
        full aggregation results table
    mlb : {str}, optional
        bandpass for mass-to-light ratio
        (the default is 'i', which [default_description])
    cb1 : {str}, optional
        bluer bandpass for color (the default is 'g', SDSS g band)
    cb2 : {str}, optional
        redder bandpass for color (the default is 'r', SDSS r band)
    '''
    cb1_nsa_mag = tab[f'mag_nsa_{cb1}']
    cb2_nsa_mag = tab[f'mag_nsa_{cb2}']

    broadband_color = cb1_nsa_mag - cb2_nsa_mag
    outermass_cmlr = (tab[f'logsollum_outer_{mlb}'] + tab['outerml_cmlr']).to(
        u.Msun)
    mass_cmlr = (tab['mass_in_ifu'].to(u.Msun) + outermass_cmlr)
    outermass_ring = (tab[f'logsollum_outer_{mlb}'] + tab['outerml_ring']).to(
        u.Msun)
    mass_ring = (tab['mass_in_ifu'].to(u.Msun) + outermass_ring)
    dlogmass_cmlr_ring = mass_cmlr.to(u.dex(u.Msun)) - mass_ring.to(u.dex(u.Msun))

    primarysample = m.mask_from_maskbits(tab['mngtarg1'], [10])
    secondarysample = m.mask_from_maskbits(tab['mngtarg1'], [11])

    fig, main_ax, hist_ax = make_panel_hist(top=0.9, left=.225)

    valid = np.isfinite(dlogmass_cmlr_ring)

    for selection, label, marker, color in zip(
        [primarysample, secondarysample], ['Primary', 'Secondary'],
        ['o', 'D'], ['r', 'b']):
    
        main_ax.scatter(
            x=broadband_color[selection * valid], y=dlogmass_cmlr_ring[selection * valid],
            c=color, edgecolor='None', s=3., marker=marker, label=label,
            alpha=0.5)

        hist_ax.hist(dlogmass_cmlr_ring[selection * valid], color=color, density=True, bins='auto',
                     histtype='step', orientation='horizontal', linewidth=0.75)

    main_ax.set_xlim(np.percentile(broadband_color[valid], [5., 99.]))
    main_ax.set_ylim(np.percentile(dlogmass_cmlr_ring[valid], [5., 99.]))

    main_ax.legend(loc='best', prop={'size': 'xx-small'})
    main_ax.tick_params(labelsize='xx-small')
    main_ax.set_xlabel(r'${}-{}$'.format(cb1, cb2), size='x-small')
    main_ax.set_ylabel(r'$\log \frac{M^{\rm tot}_{\rm CMLR}}{M^{\rm tot}_{\rm ring}}$',
                  size='x-small')
    fig.suptitle(r'Impact of aperture-correction on $M^{\rm tot}$', size='small')
    fig.savefig(os.path.join(csp_basedir, 'lib_diags/', 'mtot_compare_cmlr_ring.png'))
Esempio n. 4
0
def test_cds_function_units(reader_cls):
    data_and_readme = 'data/cdsFunctional.dat'
    reader = ascii.get_reader(reader_cls)
    table = reader.read(data_and_readme)
    assert table['logg'].unit == u.dex(u.cm / u.s**2)
    assert table['logTe'].unit == u.dex(u.K)
    assert table['Mass'].unit == u.Msun
    assert table['e_Mass'].unit == u.Msun
    assert table['Age'].unit == u.Myr
    assert table['e_Age'].unit == u.Myr
def test_cds_function_units():
    from astropy.units import dex
    data_and_readme = 'data/cdsFunctional.dat'
    reader = ascii.get_reader(ascii.Cds)
    table = reader.read(data_and_readme)
    assert table['logg'].unit == u.dex(u.cm / u.s**2)
    assert table['logTe'].unit == u.dex(u.K)
    assert table['Mass'].unit == u.Msun
    assert table['e_Mass'].unit == u.Msun
    assert table['Age'].unit == u.Myr
    assert table['e_Age'].unit == u.Myr
Esempio n. 6
0
def test_cds_function_units2(reader_cls):
    # This one includes some dimensionless dex.
    data_and_readme = 'data/cdsFunctional2.dat'
    reader = ascii.get_reader(reader_cls)
    table = reader.read(data_and_readme)
    assert table['Teff'].unit == u.K
    assert table['logg'].unit == u.dex(u.cm / u.s**2)
    assert table['vturb'].unit == u.km / u.s
    assert table['[Fe/H]'].unit == u.dex(u.one)
    assert table['e_[Fe/H]'].unit == u.dex(u.one)
    assert_almost_equal(table['[Fe/H]'].to(u.one),
                        10.**(np.array([-2.07, -1.50, -2.11, -1.64])))
Esempio n. 7
0
    def test_to_funcunit_quantity(self, Column):
        """
        Tests for #8424, check if function-unit can be retrieved from column.
        """
        d = Column([1, 2, 3], name='a', dtype="f8", unit="dex(AA)")

        assert np.all(d.quantity == ([1, 2, 3] * u.dex(u.AA)))
        assert np.all(d.quantity.value == ([1, 2, 3] * u.dex(u.AA)).value)
        assert np.all(d.quantity == d.to("dex(AA)"))
        assert np.all(d.quantity.value == d.to("dex(AA)").value)

        # make sure, casting to linear unit works
        q = [10, 100, 1000] * u.AA
        np.testing.assert_allclose(d.to(u.AA), q)
Esempio n. 8
0
def make_stdtauV_vs_dMass_ssfrsd_fig(tab, sfrsd_tab, mltype='ring', mlb='i'):
    merge_tab = t.join(tab, sfrsd_tab, 'plateifu')

    mlb_ix = totalmass.StellarMass.bands_ixs[mlb]
    absmag_sun_mlb = totalmass.StellarMass.absmag_sun[mlb_ix]

    fig, ax, cax, hist_ax = make_panel_hcb_hist(figsize=(3, 3), dpi=300, top=.8)

    logmass_in_ifu = merge_tab['mass_in_ifu'].to(u.dex(u.Msun))
    logmass_in_ifu_lw = merge_tab['ml_fluxwt'] + merge_tab['ifu_absmag'][:, mlb_ix].to(
        u.dex(m.bandpass_sol_l_unit), totalmass.bandpass_flux_to_solarunits(absmag_sun_mlb))
    std_atten_mwtd = merge_tab['std_atten_mwtd']
    mean_atten_mwtd = merge_tab['mean_atten_mwtd']
    ha_corr = np.exp(merge_tab['mean_atten_mwtd'] * (6563 / 5500)**-1.3)
    sfrsd = merge_tab['sigma_sfr'] * ha_corr * u.Msun / u.yr / u.pc**2
    mass_pca = merge_tab['mass_in_ifu'] + merge_tab['outer_mass_{}'.format(mltype)]
    ssfrsd = sfrsd / mass_pca

    sc = ax.scatter(
        x=std_atten_mwtd, y=(logmass_in_ifu - logmass_in_ifu_lw),
        c=ssfrsd.to(u.dex(ssfrsd.unit)),
        edgecolor='k', linewidths=.125, s=2., cmap='viridis_r',
        vmin=-15., vmax=-10.)

    cb = colorbartop(fig, sc, cax)
    cb.set_label(r'$\log \frac{{\Sigma}^{\rm SFR}_{R<R_e}}{M^*_{\rm tot}}$', size='xx-small')

    ax.tick_params(which='major', labelsize='xx-small')
    ax.tick_params(which='minor', labelbottom=False, labelleft=False)
    ax.set_xscale('log')

    ax.set_xlabel(r'$\sigma_{\tau_V}$', size='x-small')
    ax.set_ylabel(r'$\log{ \frac{M^*}{M^*_{\rm LW}} ~ {\rm [dex]} }$', size='x-small')

    hist_ax.hist(np.ma.masked_invalid(logmass_in_ifu - logmass_in_ifu_lw).compressed(),
                 bins='auto', histtype='step', orientation='horizontal', linewidth=.5,
                 density=True, color='k')

    for yloc, lw, ls, c in zip(
        np.percentile(np.ma.masked_invalid(logmass_in_ifu - logmass_in_ifu_lw).compressed(),
                      [16., 50., 84.]),
        [.5, 1., .5], ['--', '-', '--'], ['gray', 'k', 'gray']):

        hist_ax.axhline(yloc, linestyle=ls, linewidth=lw, color=c)

    fig.suptitle('Mass excess from luminosity-weighting', size='x-small')

    fig.savefig(
        os.path.join(basedir, 'lib_diags/', 'stdtauV_dMglobloc_ssfrsd.png'),
        dpi=fig.dpi)
Esempio n. 9
0
def update_mass_table(drpall, mass_table_old=None, limit=None, mlband='i'):
    '''
    '''
    
    # what galaxies are available to aggregate?
    res_fnames = glob(os.path.join(basedir, 'results/*-*/*-*_res.fits'))[:limit]

    # filter out whose that have not been done
    if mass_table_old is None:
        already_aggregated = [False for _ in range(len(res_fnames))]
    else:
        already_aggregated = [os.path.split(fn)[1].split('_')[0] in old_mass_table['plateifu']
                              for fn in res_fnames]
    res_fnames = [fn for done, fn in zip(already_aggregated, res_fnames)]

    # aggregate individual galaxies, and stack them 
    mass_tables_new = list(ProgressBar.map(
        partial(mass_agg_onegal, mlband=mlband), res_fnames, multiprocess=False, step=5))
    mass_table_new = t.vstack(mass_tables_new)

    # if there was an old mass table, stack it with the new one
    if mass_table_old is None:
        mass_table = mass_table_new
    else:
        mass_table = t.vstack([mass_table_old, mass_table_new], join_type='inner')

    cmlr = totalmass.cmlr_kwargs
    missing_flux =  (mass_table['nsa_absmag'].to(m.Mgy) - \
                     mass_table['ifu_absmag'].to(m.Mgy)).clip(
                        a_min=0.*m.Mgy, a_max=np.inf*m.Mgy)
    mag_missing_flux = missing_flux.to(u.ABmag)
    cb1, cb2 = cmlr['cb1'], cmlr['cb2']
    color_missing_flux = mag_missing_flux[:, totalmass.StellarMass.bands_ixs[cb1]] - \
                         mag_missing_flux[:, totalmass.StellarMass.bands_ixs[cb2]]
    color_missing_flux[~np.isfinite(color_missing_flux)] = np.inf
    mass_table['outer_ml_cmlr'] = np.polyval(cmlr['cmlr_poly'], color_missing_flux.value) * \
                                  u.dex(m.m_to_l_unit)
    mass_table['outer_lum'] = mag_missing_flux.to(
        u.dex(m.bandpass_sol_l_unit),
        totalmass.bandpass_flux_to_solarunits(totalmass.StellarMass.absmag_sun))

    mass_table['outer_mass_ring'] = \
        (mass_table['outer_lum'][:, totalmass.StellarMass.bands_ixs['i']] + \
         mass_table['outer_ml_ring']).to(u.Msun)
    mass_table['outer_mass_cmlr'] = \
        (mass_table['outer_lum'][:, totalmass.StellarMass.bands_ixs['i']] + \
         mass_table['outer_ml_cmlr']).to(u.Msun)

    return mass_table
Esempio n. 10
0
 def sollum_bands(self):
     with catch_warnings():
         simplefilter('ignore', category=RuntimeWarning)
         sollum = self.absmag_bands.to(
             u.dex(m.bandpass_sol_l_unit),
             bandpass_flux_to_solarunits(self.absmag_sun[..., None, None]))
     return sollum
Esempio n. 11
0
    def test_str(self):
        """Do some spot checks that str, repr, etc. work as expected."""
        lu1 = u.mag(u.Jy)
        assert str(lu1) == 'mag(Jy)'
        assert repr(lu1) == 'Unit("mag(Jy)")'
        assert lu1.to_string('generic') == 'mag(Jy)'
        with pytest.raises(ValueError):
            lu1.to_string('fits')
        with pytest.raises(ValueError):
            lu1.to_string(format='cds')

        lu2 = u.dex()
        assert str(lu2) == 'dex'
        assert repr(lu2) == 'Unit("dex(1)")'
        assert lu2.to_string() == 'dex(1)'

        lu3 = u.MagUnit(u.Jy, function_unit=2 * u.mag)
        assert str(lu3) == '2 mag(Jy)'
        assert repr(lu3) == 'MagUnit("Jy", unit="2 mag")'
        assert lu3.to_string() == '2 mag(Jy)'

        lu4 = u.mag(u.ct)
        assert lu4.to_string('generic') == 'mag(ct)'
        assert lu4.to_string('latex') == ('$\\mathrm{mag}$$\\mathrm{\\left( '
                                          '\\mathrm{ct} \\right)}$')
        assert lu4._repr_latex_() == lu4.to_string('latex')
Esempio n. 12
0
    def __init__(self, results, pca_system, drp, dap, drpall_row, cosmo, mlband='i'):
        self.results = results
        self.pca_system = pca_system
        self.drp = drp
        self.dap = dap
        self.drpall_row = drpall_row
        self.cosmo = cosmo
        self.mlband = mlband

        with catch_warnings():
            simplefilter('ignore')
            self.results.setup_photometry(pca_system)

        self.s2p = results.spec2phot

        # stellar mass to light ratio
        self.ml0 = results.cubechannel('ML{}'.format(mlband), 0)
        self.badpdf = results.cubechannel('GOODFRAC', 2) < 1.0e-4
        self.ml_mask = np.logical_or.reduce((self.results.mask, self.badpdf))

        # infer values in interior spaxels affected by one of the following:
        # bad PDF, foreground star, dead fiber
        self.low_or_no_cov = m.mask_from_maskbits(
            self.drp['MASK'].data, [0, 1]).mean(axis=0) > .3
        self.drp3dmask_interior = m.mask_from_maskbits(
            self.drp['MASK'].data, [2, 3]).mean(axis=0) > .3
        self.interior_mask = np.logical_or.reduce((self.badpdf, self.drp3dmask_interior))

        self.logml_final = infer_masked(
            q_trn=self.ml0, bad_trn=self.ml_mask,
            infer_here=self.interior_mask) * u.dex(m.m_to_l_unit)
Esempio n. 13
0
 def sollum_bands(self):
     with catch_warnings():
         simplefilter('ignore', category=RuntimeWarning)
         sollum = self.absmag_bands.to(
             u.dex(m.bandpass_sol_l_unit),
             bandpass_flux_to_solarunits(self.absmag_sun[..., None, None]))
     return sollum
Esempio n. 14
0
 def test_using_quantity_class(self):
     """Check that we can use Quantity if we have subok=True"""
     # following issue #5851
     lu = u.dex(u.AA)
     with pytest.raises(u.UnitTypeError):
         u.Quantity(1., lu)
     q = u.Quantity(1., lu, subok=True)
     assert type(q) is lu._quantity_class
Esempio n. 15
0
 def test_using_quantity_class(self):
     """Check that we can use Quantity if we have subok=True"""
     # following issue #5851
     lu = u.dex(u.AA)
     with pytest.raises(u.UnitTypeError):
         u.Quantity(1., lu)
     q = u.Quantity(1., lu, subok=True)
     assert type(q) is lu._quantity_class
Esempio n. 16
0
def test_inequality():
    """Check __ne__ works (regression for #5342)."""
    lu1 = u.mag(u.Jy)
    lu2 = u.dex(u.Jy)
    lu3 = u.mag(u.Jy**2)
    lu4 = lu3 - lu1
    assert lu1 != lu2
    assert lu1 != lu3
    assert lu1 == lu4
Esempio n. 17
0
def test_inequality():
    """Check __ne__ works (regresssion for #5342)."""
    lu1 = u.mag(u.Jy)
    lu2 = u.dex(u.Jy)
    lu3 = u.mag(u.Jy**2)
    lu4 = lu3 - lu1
    assert lu1 != lu2
    assert lu1 != lu3
    assert lu1 == lu4
Esempio n. 18
0
def cmlr_equivalency(slope, intecept):
    '''
    '''
    def color_to_logml(c):
        return slope * c + intercept

    def logml_to_color(logml):
        return (logml - intercept) / slope

    return [(u.mag, u.dex(m.m_to_l_unit), color_to_logml, logml_to_color)]
Esempio n. 19
0
def cmlr_equivalency(slope, intercept):
    '''
    '''
    def color_to_logml(c):
        return slope * c + intercept

    def logml_to_color(logml):
        return (logml - intercept) / slope

    return [(u.mag, u.dex(m.m_to_l_unit), color_to_logml, logml_to_color)]
Esempio n. 20
0
def compare_mtot_pca_nsa(tab, jhu_mpa, mltype='ring', mlb='i', cb1='g', cb2='r'):
    jointab = t.join(tab, jhu_mpa, 'plateifu')

    cb1_nsa_mag = jointab[f'mag_nsa_{cb1}']
    cb2_nsa_mag = jointab[f'mag_nsa_{cb2}']

    broadband_color = cb1_nsa_mag - cb2_nsa_mag

    outer_mass = (jointab[f'outerml_{mltype}'] + \
                  jointab[f'logsollum_outer_{mlb}']).to(u.dex(u.Msun))
    mass_pca = jointab['mass_in_ifu'].to(u.Msun) + outer_mass.to(u.Msun)

    nsa_h = 1.
    mass_nsa = (jointab['nsa_elpetro_mass'] * u.Msun * (nsa_h * u.littleh)**-2).to(
        u.Msun, u.with_H0(cosmo.H0))

    jhumpa_h = 1. / .7
    chabrier_to_kroupa_dex = .05
    mass_jhumpa = (10.**(jointab['LOG_MSTAR'] + chabrier_to_kroupa_dex) * \
                   u.Msun * (jhumpa_h * u.littleh)**-2.).to(u.Msun, u.with_H0(cosmo.H0))

    lowess_grid = np.linspace(np.nanmin(broadband_color), np.nanmax(broadband_color), 100).value
    lowess_pca_nsa, swt_nsa = smooth(
        x=broadband_color.value, y=np.log10(mass_pca / mass_nsa).value,
        xgrid=lowess_grid, bw=.01)
    lowess_pca_jhumpa, swt_jhumpa = smooth(
        x=broadband_color.value, y=np.log10(mass_pca / mass_jhumpa).value,
        xgrid=lowess_grid, bw=.01)
    swt_th = .2 * swt_nsa.max()
    good_lowess_nsa = (swt_nsa >= swt_th)
    good_lowess_jhumpa = (swt_jhumpa >= swt_th)

    fig, ax = plt.subplots(1, 1, figsize=(3, 3), dpi=300)

    ax.scatter(broadband_color, np.log10(mass_pca / mass_nsa),
               s=2., edgecolor='None', c='C0', label='NSA')
    ax.plot(lowess_grid[good_lowess_nsa], lowess_pca_nsa[good_lowess_nsa], linewidth=0.5, c='k', linestyle='-')

    ax.scatter(broadband_color, np.log10(mass_pca / mass_jhumpa),
               s=2., edgecolor='None', c='C1', label='JHU-MPA')
    ax.plot(lowess_grid[good_lowess_jhumpa], lowess_pca_jhumpa[good_lowess_jhumpa],
            linewidth=0.5, c='k', linestyle='--')

    ax.set_ylim([-.2, .5]);
    ax.set_xlim([-.1, 1.])

    ax.legend(loc='best', prop={'size': 'xx-small'})
    ax.tick_params(labelsize='xx-small')
    ax.set_xlabel(r'${}-{}$'.format(cb1, cb2), size='x-small')
    ax.set_ylabel(r'$\log \frac{M^*_{\rm PCA}}{M^*_{\rm catalog}}$',
                  size='x-small')
    fig.tight_layout()
    fig.subplots_adjust(top=.95, left=.21, right=.97)

    fig.savefig(os.path.join(csp_basedir, 'lib_diags/', 'dMasses.png'), dpi=fig.dpi)
Esempio n. 21
0
def make_stdtauV_vs_ssfrsd_dMass_fig(tab, sfrsd_tab, mltype='ring', mlb='i'):
    merge_tab = t.join(tab, sfrsd_tab, 'plateifu')

    mlb_ix = totalmass.StellarMass.bands_ixs[mlb]
    absmag_sun_mlb = totalmass.StellarMass.absmag_sun[mlb_ix]

    fig, ax = plt.subplots(1, 1, figsize=(3, 3), dpi=300)

    logmass_in_ifu = merge_tab['mass_in_ifu'].to(u.dex(u.Msun))
    logmass_in_ifu_lw = merge_tab['ml_fluxwt'] + merge_tab[f'logsollum_in_ifu_{mlb}']
    std_atten_mwtd = merge_tab['std_atten_mwtd']
    mean_atten_mwtd = merge_tab['mean_atten_mwtd']
    ha_corr = np.exp(merge_tab['mean_atten_mwtd'] * (6563 / 5500)**-1.3)
    sfrsd = merge_tab['sigma_sfr'] * ha_corr * u.Msun / u.yr / u.pc**2
    outer_mass = (merge_tab[f'outerml_{mltype}'] + \
                  merge_tab[f'logsollum_outer_{mlb}']).to(u.Msun)
    mass_pca = merge_tab['mass_in_ifu'].to(u.Msun) + outer_mass
    ssfrsd = sfrsd / mass_pca

    sc = ax.scatter(
        x=np.log10(std_atten_mwtd), c=(logmass_in_ifu - logmass_in_ifu_lw),
        y=ssfrsd.to(u.dex(ssfrsd.unit)),
        edgecolor='k', linewidths=.125, s=1., cmap='viridis_r', alpha=0.5,
        vmin=.01, vmax=.12)

    cb = fig.colorbar(sc, ax=ax, extend='both')
    cb.set_label(r'$\log{ \frac{M^*}{M^*_{\rm LW}} ~ {\rm [dex]} }$', size='xx-small')
    cb.ax.tick_params(labelsize='xx-small')

    ax.tick_params(which='major', labelsize='xx-small')
    ax.tick_params(which='minor', labelbottom=False, labelleft=False)

    ax.set_xlabel(r'$\log \sigma_{\tau_V}$', size='x-small')
    ax.set_ylabel(r'$\log \frac{{\Sigma}^{\rm SFR}_{R<R_e}}{M^*_{\rm tot}}$', size='x-small')

    fig.tight_layout()
    fig.suptitle('Mass excess from luminosity-weighting', size='x-small')
    fig.subplots_adjust(left=.225, bottom=.125, right=.9, top=.925)

    fig.savefig(
        os.path.join(csp_basedir, 'lib_diags/', 'stdtauV_ssfrsd_dMglobloc.png'),
        dpi=fig.dpi)
Esempio n. 22
0
    def to_table(self):
        '''
        make table of stellar-mass results
        '''

        tab = t.QTable()
        tab['plateifu'] = [self.drpall_row['plateifu']]

        # tabulate mass in IFU
        tab['mass_in_ifu'] = self.mstar_in_ifu[
            None, ...][:, self.bands_ixs[self.mlband]]
        nsa_absmag = self.nsa_absmags_cosmocorr
        #tab['nsa_absmag'].meta['bands'] = self.bands
        ifu_absmag = (self.ifu_flux_bands.to(u.ABmag) - self.distmod)
        #tab['ifu_absmag'].meta['bands'] = self.bands
        missing_flux = ((nsa_absmag + self.distmod).to(m.Mgy) -
                        (ifu_absmag + self.distmod).to(m.Mgy)).clip(
                            a_min=0. * m.Mgy, a_max=np.inf * m.Mgy)

        for i, b in enumerate(self.bands):
            outer_flux = missing_flux[i]
            if outer_flux <= 0. * m.Mgy:
                tab['outer_absmag_{}'.format(b)] = np.inf * u.ABmag
                tab['outer_lum_{}'.format(b)] = -np.inf * u.dex(
                    m.bandpass_sol_l_unit)
            else:
                tab['outer_absmag_{}'.format(b)] = outer_flux.to(
                    u.ABmag) - self.distmod
                tab['outer_lum_{}'.format(b)] = tab['outer_absmag_{}'.format(
                    b)].to(
                        u.dex(m.bandpass_sol_l_unit),
                        bandpass_flux_to_solarunits(StellarMass.absmag_sun[i]))

        tab['outer_ml_ring'] = self.ml_ring()
        #tab['outer_ml_ring'].meta['band'] = self.mlband

        tab['ml_fluxwt'] = self.logml_fnuwt
        #tab['ml_fluxwt'].meta['band'] = self.mlband

        tab['distmod'] = self.distmod[None, ...]

        return tab
Esempio n. 23
0
def logspace(start, stop, *args, **kwargs):
    from astropy.units import LogQuantity, dex
    if (not isinstance(start, LogQuantity)
            or not isinstance(stop, LogQuantity)):
        raise NotImplementedError

    # Get unit from end point as for linspace.
    stop = stop.to(dex(stop.unit.physical_unit))
    start = start.to(stop.unit)
    unit = stop.unit.physical_unit
    return (start.value, stop.value) + args, kwargs, unit, None
Esempio n. 24
0
def compare_missing_mass(tab, mlb='i', cb1='g', cb2='r'):
    mlb_ix = totalmass.StellarMass.bands_ixs[mlb]
    cb1_ix = totalmass.StellarMass.bands_ixs[cb1]
    cb2_ix = totalmass.StellarMass.bands_ixs[cb2]
    absmag_sun_mlb = totalmass.StellarMass.absmag_sun[mlb_ix]

    broadband_color = (tab['nsa_absmag'][:, cb1_ix] - tab['nsa_absmag'][:, cb2_ix])
    outerlum_frac = tab['outer_lum'][:, mlb_ix].to(m.bandpass_sol_l_unit) / \
                    tab['nsa_absmag'][:, mlb_ix].to(m.bandpass_sol_l_unit, 
                        totalmass.bandpass_flux_to_solarunits(absmag_sun_mlb))
    dlogmass_cmlr_ring = ((tab['mass_in_ifu'] + tab['outer_mass_cmlr']).to(u.dex(u.Msun)) - \
                          (tab['mass_in_ifu'] + tab['outer_mass_ring']).to(u.dex(u.Msun)))

    primarysample = m.mask_from_maskbits(tab['mngtarg1'], [10])
    secondarysample = m.mask_from_maskbits(tab['mngtarg1'], [11])

    fig, main_ax, hist_ax = make_panel_hist(top=0.9, left=.225)

    valid = np.isfinite(dlogmass_cmlr_ring)

    for selection, label, marker, color in zip(
        [primarysample, secondarysample], ['Primary', 'Secondary'],
        ['o', 'D'], ['r', 'b']):
    
        main_ax.scatter(
            x=broadband_color[selection * valid], y=dlogmass_cmlr_ring[selection * valid],
            c=color, edgecolor='None', s=5., marker=marker, label=label)

        hist_ax.hist(dlogmass_cmlr_ring[selection * valid], color=color, density=True, bins='auto',
                     histtype='step', orientation='horizontal', linewidth=0.75)

    main_ax.set_xlim(np.percentile(broadband_color[valid], [1., 99.]))
    main_ax.set_ylim(np.percentile(dlogmass_cmlr_ring[valid], [1., 99.]))

    main_ax.legend(loc='best', prop={'size': 'xx-small'})
    main_ax.tick_params(labelsize='xx-small')
    main_ax.set_xlabel(r'${}-{}$'.format(cb1, cb2), size='x-small')
    main_ax.set_ylabel(r'$\log \frac{M^{\rm tot}_{\rm CMLR}}{M^{\rm tot}_{\rm ring}}$',
                  size='x-small')
    fig.suptitle(r'Impact of aperture-correction on $M^{\rm tot}$', size='small')
    fig.savefig(os.path.join(basedir, 'lib_diags/', 'mtot_compare_cmlr_ring.png'))
Esempio n. 25
0
def make_stdtauV_vs_ssfrsd_dMass_fig(tab, sfrsd_tab, mltype='ring', mlb='i'):
    merge_tab = t.join(tab, sfrsd_tab, 'plateifu')

    mlb_ix = totalmass.StellarMass.bands_ixs[mlb]
    absmag_sun_mlb = totalmass.StellarMass.absmag_sun[mlb_ix]

    fig, ax = plt.subplots(1, 1, figsize=(3, 3), dpi=300)

    logmass_in_ifu = merge_tab['mass_in_ifu'].to(u.dex(u.Msun))
    logmass_in_ifu_lw = merge_tab['ml_fluxwt'] + merge_tab['ifu_absmag'][:, mlb_ix].to(
        u.dex(m.bandpass_sol_l_unit), totalmass.bandpass_flux_to_solarunits(absmag_sun_mlb))
    std_atten_mwtd = merge_tab['std_atten_mwtd']
    mean_atten_mwtd = merge_tab['mean_atten_mwtd']
    ha_corr = np.exp(merge_tab['mean_atten_mwtd'] * (6563 / 5500)**-1.3)
    sfrsd = merge_tab['sigma_sfr'] * ha_corr * u.Msun / u.yr / u.pc**2
    mass_pca = merge_tab['mass_in_ifu'] + merge_tab['outer_mass_{}'.format(mltype)]
    ssfrsd = sfrsd / mass_pca

    sc = ax.scatter(
        x=np.log10(std_atten_mwtd), c=(logmass_in_ifu - logmass_in_ifu_lw),
        y=ssfrsd.to(u.dex(ssfrsd.unit)),
        edgecolor='k', linewidths=.125, s=2., cmap='viridis_r',
        vmin=.01, vmax=.12)

    cb = fig.colorbar(sc, ax=ax, extend='both')
    cb.set_label(r'$\log{ \frac{M^*}{M^*_{\rm LW}} ~ {\rm [dex]} }$', size='xx-small')
    cb.ax.tick_params(labelsize='xx-small')

    ax.tick_params(which='major', labelsize='xx-small')
    ax.tick_params(which='minor', labelbottom=False, labelleft=False)

    ax.set_xlabel(r'$\log \sigma_{\tau_V}$', size='x-small')
    ax.set_ylabel(r'$\log \frac{{\Sigma}^{\rm SFR}_{R<R_e}}{M^*_{\rm tot}}$', size='x-small')

    fig.tight_layout()
    fig.suptitle('Mass excess from luminosity-weighting', size='x-small')
    fig.subplots_adjust(left=.2, bottom=.125, right=.9, top=.925)

    fig.savefig(
        os.path.join(basedir, 'lib_diags/', 'stdtauV_ssfrsd_dMglobloc.png'),
        dpi=fig.dpi)
Esempio n. 26
0
def make_stdtauV_vs_dMass_ba_fig(tab, mlb='i'):
    mlb_ix = totalmass.StellarMass.bands_ixs[mlb]
    absmag_sun_mlb = totalmass.StellarMass.absmag_sun[mlb_ix]

    fig, ax, cax, hist_ax = make_panel_hcb_hist(figsize=(3, 3), dpi=300)

    logmass_in_ifu = tab['mass_in_ifu'].to(u.dex(u.Msun))
    logmass_in_ifu_lw = tab['ml_fluxwt'] + tab['ifu_absmag'][:, mlb_ix].to(
        u.dex(m.bandpass_sol_l_unit), totalmass.bandpass_flux_to_solarunits(absmag_sun_mlb))
    std_atten_mwtd = tab['std_atten_mwtd']
    mean_atten_mwtd = tab['mean_atten_mwtd']
    ba = tab['nsa_elpetro_ba']

    sc = ax.scatter(
        x=std_atten_mwtd, y=(logmass_in_ifu - logmass_in_ifu_lw), c=ba,
        edgecolor='k', linewidths=.125, s=2., cmap='viridis_r',
        vmin=.15, vmax=.8)

    cb = colorbartop(fig, sc, cax)
    cb.set_label(r'$\frac{b}{a}$', size='x-small', labelpad=0)

    ax.set_xlabel(r'$\sigma_{\tau_V}$', size='x-small')
    ax.set_ylabel(r'$\log{ \frac{M^*}{M^*_{\rm LW}} ~ {\rm [dex]} }$', size='x-small')

    hist_ax.hist(np.ma.masked_invalid(logmass_in_ifu - logmass_in_ifu_lw).compressed(),
                 bins='auto', histtype='step', orientation='horizontal', linewidth=.5,
                 density=True, color='k')

    for yloc, lw, ls, c in zip(
        np.percentile(np.ma.masked_invalid(logmass_in_ifu - logmass_in_ifu_lw).compressed(),
                      [16., 50., 84.]),
        [.5, 1., .5], ['--', '-', '--'], ['gray', 'k', 'gray']):

        hist_ax.axhline(yloc, linestyle=ls, linewidth=lw, color=c)

    fig.suptitle('Mass excess from luminosity-weighting', size='x-small')

    fig.savefig(
        os.path.join(basedir, 'lib_diags/', 'stdtauV_dMglobloc_ba.png'),
        dpi=fig.dpi)
Esempio n. 27
0
def make_stdtauV_vs_dMass_ba_fig(tab, mlb='i'):
    '''global-local plot: mean tau, dmass, b/a
    
    make figure plotting mass deficit on y,
    mass weighted atten on x, colored by NSA b/a
    
    Parameters
    ----------
    tab : astropy.table.Table
        full aggregation results table
    mlb : {str}, optional
        mass-to-light bandpass (the default is 'i', SDSS i-band)
    '''

    fig, ax, cax, hist_ax = make_panel_hcb_hist(figsize=(3, 3), dpi=300)

    logmass_in_ifu = tab['mass_in_ifu'].to(u.dex(u.Msun))
    logmass_in_ifu_lw = tab['ml_fluxwt'] + tab[f'logsollum_in_ifu_{mlb}']
    std_atten_mwtd = tab['std_atten_mwtd']
    mean_atten_mwtd = tab['mean_atten_mwtd']
    ba = tab['nsa_elpetro_ba']

    sc = ax.scatter(
        x=std_atten_mwtd, y=(logmass_in_ifu - logmass_in_ifu_lw), c=ba,
        edgecolor='k', linewidths=.125, s=1., cmap='viridis_r', alpha=0.5,
        vmin=.15, vmax=.8)

    ax.set_ylim([-.1, 0.3])

    cb = colorbartop(fig, sc, cax)
    cb.set_label(r'$\frac{b}{a}$', size='x-small', labelpad=0)

    ax.set_xlabel(r'$\sigma_{\tau_V}$', size='x-small')
    ax.set_ylabel(r'$\log{ \frac{M^*}{M^*_{\rm LW}} ~ {\rm [dex]} }$', size='x-small')

    hist_ax.hist(np.ma.masked_invalid(logmass_in_ifu - logmass_in_ifu_lw).compressed(),
                 bins='auto', histtype='step', orientation='horizontal', linewidth=.5,
                 density=True, color='k')

    for yloc, lw, ls, c in zip(
        np.percentile(np.ma.masked_invalid(logmass_in_ifu - logmass_in_ifu_lw).compressed(),
                      [16., 50., 84.]),
        [.5, 1., .5], ['--', '-', '--'], ['gray', 'k', 'gray']):

        hist_ax.axhline(yloc, linestyle=ls, linewidth=lw, color=c)

    fig.suptitle('Mass excess from luminosity-weighting', size='x-small')

    fig.savefig(
        os.path.join(csp_basedir, 'lib_diags/', 'stdtauV_dMglobloc_ba.png'),
        dpi=fig.dpi)
Esempio n. 28
0
 def p_main(p):
     '''
     main : factor combined_units
          | combined_units
          | OPEN_BRACKET combined_units CLOSE_BRACKET
          | factor
     '''
     from astropy.units.core import Unit
     from astropy.units import dex
     if len(p) == 3:
         p[0] = Unit(p[1] * p[2])
     elif len(p) == 4:
         p[0] = dex(p[2])
     else:
         p[0] = Unit(p[1])
Esempio n. 29
0
def update_mass_table(res_fnames, mlband='i'):
    '''
    '''

    # filter out whose that have not been done
    if mass_table_old is None:
        already_aggregated = [False for _ in range(len(res_fnames))]
    else:
        already_aggregated = [
            os.path.split(fn)[1].split('_')[0] in mass_table_old['plateifu']
            for fn in res_fnames
        ]
    res_fnames = [fn for done, fn in zip(already_aggregated, res_fnames)]

    # aggregate individual galaxies, and stack them
    mass_tables_new = list(
        ProgressBar.map(partial(mass_agg_onegal, mlband=mlband),
                        res_fnames,
                        multiprocess=False,
                        step=5))
    mass_table_new = t.vstack(mass_tables_new)

    # if there was an old mass table, stack it with the new one
    if mass_table_old is None:
        mass_table = mass_table_new
    else:
        mass_table = t.vstack([mass_table_old, mass_table_new],
                              join_type='inner')

    cmlr = cmlr_kwargs

    cb1, cb2 = cmlr['cb1'], cmlr['cb2']
    color_missing_flux = mass_table['outer_absmag_{}'.format(cb1)] - \
                         mass_table['outer_absmag_{}'.format(cb2)]

    mass_table['outer_ml_cmlr'] = np.polyval(
        cmlr['cmlr_poly'], color_missing_flux.value) * u.dex(m.m_to_l_unit)

    mass_table['outer_mass_ring'] = \
        (mass_table['outer_lum_{}'.format(mlband)] + \
         mass_table['outer_ml_ring']).to(u.Msun)
    mass_table['outer_mass_cmlr'] = \
        (mass_table['outer_lum_{}'.format(mlband)] + \
         mass_table['outer_ml_cmlr']).to(u.Msun)

    return mass_table['plateifu', 'mass_in_ifu', 'outer_mass_cmlr',
                      'outer_mass_ring']
Esempio n. 30
0
def make_meanstdtauV_vs_dMass_fig(tab, mlb='i'):
    '''global-local plot: sig tau, mean tau, dmass
    
    make figure plotting mass weighted atten on x,
    std of mass weighted atten on y, colored by mass deficit
    
    Parameters
    ----------
    tab : astropy.table.Table
        full aggregation results table
    mlb : {str}, optional
        mass-to-light bandpass (the default is 'i', SDSS i-band)
    '''

    fig, ax, cax, hist_ax = make_panel_hcb_hist(figsize=(3, 3), dpi=300)

    logmass_in_ifu = tab['mass_in_ifu'].to(u.dex(u.Msun))
    logmass_in_ifu_lw = tab['ml_fluxwt'] + tab[f'logsollum_in_ifu_{mlb}']
    std_atten_mwtd = tab['std_atten_mwtd']
    mean_atten_mwtd = tab['mean_atten_mwtd']

    sc = ax.scatter(
        y=std_atten_mwtd, x=mean_atten_mwtd, c=(logmass_in_ifu - logmass_in_ifu_lw),
        edgecolor='k', linewidths=.125, s=1., cmap='viridis_r', alpha=0.5,
        vmin=.005, vmax=.15)
    
    cb = colorbartop(fig, sc, cax)
    cb.set_label(r'$\log \frac{M^*}{M_{\rm LW}}$', size='x-small', labelpad=0)

    ax.set_ylabel(r'$\sigma_{\tau_V}$', size='x-small')
    ax.set_xlabel(r'$\bar{\tau_V}$', size='x-small')

    hist_ax.hist(std_atten_mwtd, bins='auto', histtype='step', range=[0.1, 1.5],
                 orientation='horizontal', linewidth=.5, density=True, color='k')

    for yloc, lw, ls, c in zip(
        np.percentile(std_atten_mwtd[np.isfinite(std_atten_mwtd)], [16., 50., 84.]),
        [.5, 1., .5], ['--', '-', '--'], ['gray', 'k', 'gray']):

        hist_ax.axhline(yloc, linestyle=ls, linewidth=lw, color=c)

    fig.suptitle('Mass excess from luminosity-weighting', size='x-small')

    fig.savefig(
        os.path.join(csp_basedir, 'lib_diags/', 'mean+stdtauV_dMglobloc.png'),
        dpi=fig.dpi)
Esempio n. 31
0
class TestRoundtripCDS(RoundtripBase):
    format_ = 'cds'

    @pytest.mark.parametrize('unit', [
        unit for unit in u_format.CDS._units.values()
        if (isinstance(unit, core.UnitBase) and
            not isinstance(unit, core.PrefixUnit))])
    def test_roundtrip(self, unit):
        self.check_roundtrip(unit)
        if unit == u.mag:
            # Skip mag: decomposes into dex, which is unknown to CDS.
            return

        self.check_roundtrip_decompose(unit)

    @pytest.mark.parametrize('unit', [u.dex(unit) for unit in
                                      (u.cm/u.s**2, u.K, u.Lsun)])
    def test_roundtrip_dex(self, unit):
        string = unit.to_string(format='cds')
        recovered = u.Unit(string, format='cds')
        assert recovered == unit
Esempio n. 32
0
    def __init__(self,
                 results,
                 pca_system,
                 drp,
                 dap,
                 drpall_row,
                 cosmo,
                 mlband='i'):
        self.results = results
        self.pca_system = pca_system
        self.drp = drp
        self.dap = dap
        self.drpall_row = drpall_row
        self.cosmo = cosmo
        self.mlband = mlband

        with catch_warnings():
            simplefilter('ignore')
            self.results.setup_photometry(pca_system)

        self.s2p = results.spec2phot

        # stellar mass to light ratio
        self.ml0 = results.cubechannel('ML{}'.format(mlband), 0)
        self.badpdf = results.cubechannel('GOODFRAC', 2) < 1.0e-4
        self.ml_mask = np.logical_or.reduce((self.results.mask, self.badpdf))

        # infer values in interior spaxels affected by one of the following:
        # bad PDF, foreground star, dead fiber
        self.low_or_no_cov = m.mask_from_maskbits(self.drp['MASK'].data,
                                                  [0, 1]).mean(axis=0) > .3
        self.drp3dmask_interior = m.mask_from_maskbits(
            self.drp['MASK'].data, [2, 3]).mean(axis=0) > .3
        self.interior_mask = np.logical_or.reduce(
            (self.badpdf, self.drp3dmask_interior))

        self.logml_final = infer_masked(q_trn=self.ml0,
                                        bad_trn=self.ml_mask,
                                        infer_here=self.interior_mask) * u.dex(
                                            m.m_to_l_unit)
Esempio n. 33
0
def test_qtable_column_conversion():
    """
    Ensures that a QTable that gets assigned a unit switches to be Quantity-y
    """
    qtab = table.QTable([[1, 2], [3, 4.2]], names=['i', 'f'])

    assert isinstance(qtab['i'], table.column.Column)
    assert isinstance(qtab['f'], table.column.Column)

    qtab['i'].unit = 'km/s'
    assert isinstance(qtab['i'], u.Quantity)
    assert isinstance(qtab['f'], table.column.Column)

    # should follow from the above, but good to make sure as a #4497 regression test
    assert isinstance(qtab['i'][0], u.Quantity)
    assert isinstance(qtab[0]['i'], u.Quantity)
    assert not isinstance(qtab['f'][0], u.Quantity)
    assert not isinstance(qtab[0]['f'], u.Quantity)

    # Regression test for #5342: if a function unit is assigned, the column
    # should become the appropriate FunctionQuantity subclass.
    qtab['f'].unit = u.dex(u.cm/u.s**2)
    assert isinstance(qtab['f'], u.Dex)
Esempio n. 34
0
def test_qtable_column_conversion():
    """
    Ensures that a QTable that gets assigned a unit switches to be Quantity-y
    """
    qtab = table.QTable([[1, 2], [3, 4.2]], names=['i', 'f'])

    assert isinstance(qtab['i'], table.column.Column)
    assert isinstance(qtab['f'], table.column.Column)

    qtab['i'].unit = 'km/s'
    assert isinstance(qtab['i'], u.Quantity)
    assert isinstance(qtab['f'], table.column.Column)

    # should follow from the above, but good to make sure as a #4497 regression test
    assert isinstance(qtab['i'][0], u.Quantity)
    assert isinstance(qtab[0]['i'], u.Quantity)
    assert not isinstance(qtab['f'][0], u.Quantity)
    assert not isinstance(qtab[0]['f'], u.Quantity)

    # Regression test for #5342: if a function unit is assigned, the column
    # should become the appropriate FunctionQuantity subclass.
    qtab['f'].unit = u.dex(u.cm / u.s**2)
    assert isinstance(qtab['f'], u.Dex)
Esempio n. 35
0
    def test_str(self):
        """Do some spot checks that str, repr, etc. work as expected."""
        lu1 = u.mag(u.Jy)
        assert str(lu1) == 'mag(Jy)'
        assert repr(lu1) == 'Unit("mag(Jy)")'
        assert lu1.to_string('generic') == 'mag(Jy)'
        with pytest.raises(ValueError):
            lu1.to_string('fits')

        lu2 = u.dex()
        assert str(lu2) == 'dex'
        assert repr(lu2) == 'Unit("dex(1)")'
        assert lu2.to_string() == 'dex(1)'

        lu3 = u.MagUnit(u.Jy, function_unit=2*u.mag)
        assert str(lu3) == '2 mag(Jy)'
        assert repr(lu3) == 'MagUnit("Jy", unit="2 mag")'
        assert lu3.to_string() == '2 mag(Jy)'

        lu4 = u.mag(u.ct)
        assert lu4.to_string('generic') == 'mag(ct)'
        assert lu4.to_string('latex') == ('$\\mathrm{mag}$$\\mathrm{\\left( '
                                          '\\mathrm{ct} \\right)}$')
        assert lu4._repr_latex_() == lu4.to_string('latex')
Esempio n. 36
0
    'tm':
    tm,
    'dt':
    TimeDelta([1, 2] * u.day),
    'sc':
    sc,
    'scc':
    scc,
    'scd':
    SkyCoord([1, 2], [3, 4], [5, 6],
             unit='deg,deg,m',
             frame='fk4',
             obstime=['J1990.5', 'J1991.5']),
    'x': [1, 2] * u.m,
    'qdb': [10, 20] * u.dB(u.mW),
    'qdex': [4.5, 5.5] * u.dex(u.cm / u.s**2),
    'qmag': [21, 22] * u.ABmag,
    'lat':
    Latitude([1, 2] * u.deg),
    'lon':
    Longitude([1, 2] * u.deg, wrap_angle=180. * u.deg),
    'ang':
    Angle([1, 2] * u.deg),
    'el2':
    el2,
}

time_attrs = ['value', 'shape', 'format', 'scale', 'location']
compare_attrs = {
    'c1': ['data'],
    'c2': ['data'],
Esempio n. 37
0
    return olsfit


if __name__ == '__main__':
    mlband = 'i'

    mass_table = update_mass_table(drpall, mass_table_old=None, limit=None, mlband=mlband)
    drpall.keep_columns(['plateifu', 'mangaid', 'objra', 'objdec', 'ebvgal', 
                         'mngtarg1', 'mngtarg2', 'mngtarg3', 'nsa_iauname', 'ifudesignsize',
                         'nsa_z', 'nsa_zdist', 'nsa_nsaid', 'nsa_elpetro_ba', 'nsa_elpetro_mass'])
    full_table = t.join(mass_table, drpall, 'plateifu')
    
    mlband_ix = totalmass.StellarMass.bands_ixs[mlband]
    mlband_absmag_sun = totalmass.StellarMass.absmag_sun[mlband_ix]
    mass_deficit = full_table['mass_in_ifu'].to(u.dex(u.Msun)) - \
        (full_table['ml_fluxwt'] + full_table['ifu_absmag'][:, mlband_ix].to(
             u.dex(m.bandpass_sol_l_unit), totalmass.bandpass_flux_to_solarunits(
                 mlband_absmag_sun)))
    mass_deficit_order = np.argsort(mass_deficit)[::-1]


    compare_outerml_ring_cmlr(full_table)
    compare_missing_mass(full_table)
    make_missing_mass_fig(full_table, mltype='ring')
    make_missing_mass_fig(full_table, mltype='cmlr')
    make_missing_flux_fig(full_table)
    compare_mtot_pca_nsa(full_table, jhumpa, mltype='ring')
    #compare_mtot_pca_nsa(full_table, jhumpa, mltype='cmlr')
    make_meanstdtauV_vs_dMass_fig(full_table)
    make_stdtauV_vs_dMass_ba_fig(full_table)
Esempio n. 38
0
 "M_E": u.M_earth,
 "Earth Mass": u.M_earth,
 "M_J": u.M_jupiter,
 "Jupiter Mass": u.M_jupiter,
 "R_Earth": u.R_earth,  # Add u.R_jupiter
 "Earth Radius": u.R_earth,
 "Jupiter Radius": u.R_jupiter,
 "R_Sun": u.R_sun,
 "Rstar": u.R_sun,
 "a_perp": u.au,
 "arc-sec/year": u.arcsec / u.yr,
 "cm/s**2": u.cm / u.s**2,
 "g/cm**3": u.g / u.cm**3,
 "days": u.day,
 "degrees": u.deg,
 "dexincgs": u.dex(u.cm / u.s**2),
 "hours": u.hr,
 "hrs": u.hr,
 "kelvin": u.K,
 "logLsun": u.dex(u.L_sun),
 "log(Solar)": u.dex(u.L_sun),
 "mags": u.mag,
 "microas": u.uas,
 "perc": u.percent,
 "pi_E": None,
 "pi_EE": None,
 "pi_EN": None,
 "pi_rel": None,
 "ppm": cds.ppm,
 "seconds": u.s,
 "Solar mass": u.M_sun,
Esempio n. 39
0
    def __init__(self, fitfilename, sedfilename):
        """
        potato potato potato
        """
        fitfile = open(fitfilename)
        sedfile = open(sedfilename)
        fitinfo = fitfile.readlines()
        sedinfo = sedfile.readlines()
        fitfile.close()
        sedfile.close()

        #strip out newline characters
        for i in range(len(fitinfo)):
            fitinfo[i] = fitinfo[i].strip()
        for i in range(len(sedinfo)):
            sedinfo[i] = sedinfo[i].strip()

        #first go through fitinfo
        filternames = fitinfo[1].strip("#")
        filternames = filternames.split()
        flux = np.array(fitinfo[2].split(), dtype=float) * u.Jy
        fluxerr = np.array(fitinfo[3].split(), dtype=float) * u.Jy
        predicted = np.array(fitinfo[12].split(), dtype=float) * u.Jy
        self.obs_filters = filternames
        self.obs_flux = flux
        self.obs_flux_err = fluxerr
        self.obs_predict = predicted

        bestfitmodel = fitinfo[8].split()
        self.bestfit_i_sfh = int(bestfitmodel[0])
        self.bestfit_i_ir = int(bestfitmodel[1])
        self.bestfit_chi2 = float(bestfitmodel[2])
        self.bestfit_redshift = float(bestfitmodel[3])

        bestfitparams = fitinfo[9].strip('.#')
        bestfitparams = re.split('\.+', bestfitparams)
        bestfitresults = list(map(float, fitinfo[10].split()))
        assert len(bestfitparams) == len(bestfitresults)
        for i, paramname in enumerate(bestfitparams):
            setattr(self, self.clean_param_names(paramname), bestfitresults[i])

        #now working on the marginal PDF histograms for each parameter
        marginalpdfs = fitinfo[15:]
        #first, need to split the pdfs into each parameter
        self.marginal_pdfs = {}
        self.marginal_percentiles = {}
        hash_idx = []
        for i in range(len(marginalpdfs)):
            if '#' in marginalpdfs[i]:
                hash_idx.append(i)
        assert len(hash_idx) % 2 == 0
        for i in range(len(hash_idx) // 2):
            param = marginalpdfs[hash_idx[2 * i]].strip(' #.')
            marginal = marginalpdfs[hash_idx[2 * i] + 1:hash_idx[2 * i + 1]]
            marginal = np.array([j.split() for j in marginal], dtype=float)
            percentile = np.array(marginalpdfs[hash_idx[2 * i + 1] +
                                               1].split(),
                                  dtype=float)
            self.marginal_pdfs[self.clean_param_names(param)] = marginal
            self.marginal_percentiles[self.clean_param_names(
                param)] = percentile

        #now time for the SED file
        self.sed_model_params = {}
        #there are model names and params on lines 2 & 3 and 5 & 6
        modelparams = sedinfo[2].strip('.#')
        modelparams = re.split('\.+', modelparams)
        model_vals = list(map(float, sedinfo[3].split()))
        assert len(modelparams) == len(model_vals)
        for i, paramname in enumerate(modelparams):
            self.sed_model_params[self.clean_param_names(
                paramname)] = model_vals[i]
        modelparams = sedinfo[5].strip('.#')
        modelparams = re.split('\.+', modelparams)
        model_vals = list(map(float, sedinfo[6].split()))
        assert len(modelparams) == len(model_vals)
        for i, paramname in enumerate(modelparams):
            self.sed_model_params[self.clean_param_names(
                paramname)] = model_vals[i]
        #sed is from line 10 to the end.
        #three columns, log lambda, log L_lam attenuated, log L_lam unattenuated
        model_sed = sedinfo[10:]
        model_sed = [i.split() for i in model_sed]
        self.sed_model = np.array(model_sed, dtype=float)
        self.sed_model_logwaves = self.sed_model[:, 0] * u.dex(u.AA)
        self.sed_model_logluminosity_lambda = self.sed_model[:, 1] * u.dex(
            u.Lsun / u.AA)
Esempio n. 40
0
import sys

# Related third party imports.
from astropy import units as u
from astropy.io import ascii
import pandas
from math import isnan
import matplotlib.pyplot as plt
import numpy
from scipy.interpolate import interp1d 
#import splat
from splat import SPLAT_PATH, SPLAT_URL
EVOLUTIONARY_MODEL_FOLDER = '/reference/EvolutionaryModels/'
EMODELS = ['baraffe','burrows','saumon']
EPARAMETERS = ['mass','age','temperature','gravity','luminosity','radius']
EPARAMETER_UNITS = {'mass': u.solMass, 'age': u.Gyr, 'temperature': u.K, 'gravity': u.dex(u.cm / u.s**2),\
    'luminosity': u.dex(u.solLum), 'radius': u.solRad}

# change the command prompt
sys.ps1 = 'splat evolve> '


###############################################################################
###############################################################################
def readModel(*model,**kwargs):
    """
    :Description: This class reads in evolutionary models that are defined 
                  in the methods below, and their data is acquired `here
                  <http://pono.ucsd.edu/~adam/splat/EvolutionaryModels/>`_.
                  Units are the following: masses are in M/Msun, 
                  luminosities in log L/Lsun, radius in R/Rsun, surface 
Esempio n. 41
0
def test_cds_log10_dimensionless():
    assert u.Unit('[-]', format='cds') == u.dex(u.dimensionless_unscaled)
    assert u.dex(u.dimensionless_unscaled).to_string(format='cds') == "[-]"
Esempio n. 42
0
    (["uarcmin"], u.uarcmin),
    (["uarcsec"], u.uarcsec),
    (["kbarn"], u.kbarn),
    (["Gbit"], u.Gbit),
    (["Gibit"], 2 ** 30 * u.bit),
    (["kbyte"], u.kbyte),
    (["mRy"], 0.001 * u.Ry),
    (["mmag"], u.mmag),
    (["Mpc"], u.Mpc),
    (["Gyr"], u.Gyr),
    (["°"], u.degree),
    (["°/s"], u.degree / u.s),
    (["Å"], u.AA),
    (["Å/s"], u.AA / u.s),
    (["\\h"], si.h),
    (["[cm/s2]"], dex(u.cm / u.s ** 2)),
    (["[K]"], dex(u.K)),
    (["[-]"], dex(u.dimensionless_unscaled))])
def test_cds_grammar(strings, unit):
    for s in strings:
        print(s)
        unit2 = u_format.CDS.parse(s)
        assert unit2 == unit


@pytest.mark.parametrize('string', [
    '0.1 nm',
    'solMass(3/2)',
    'km / s',
    'km s-1',
    'pix0.1nm',
 def __init__(self, fitfilename, sedfilename):
     """
     potato potato potato
     """
     fitfile = open(fitfilename)
     sedfile = open(sedfilename)
     fitinfo = fitfile.readlines()
     sedinfo = sedfile.readlines()
     fitfile.close()
     sedfile.close()
     
     #strip out newline characters
     for i in range(len(fitinfo)):
         fitinfo[i] = fitinfo[i].strip()
     for i in range(len(sedinfo)):
         sedinfo[i] = sedinfo[i].strip()
     
     #first go through fitinfo
     filternames = fitinfo[1].strip("#")
     filternames = filternames.split()
     flux = np.array(fitinfo[2].split(), dtype=float) * u.Jy
     fluxerr = np.array(fitinfo[3].split(), dtype=float) * u.Jy
     predicted = np.array(fitinfo[12].split(), dtype=float) * u.Jy
     self.obs_filters = filternames
     self.obs_flux = flux 
     self.obs_flux_err = fluxerr
     self.obs_predict = predicted
     
     bestfitmodel = fitinfo[8].split()
     self.bestfit_i_sfh = int(bestfitmodel[0])
     self.bestfit_i_ir = int(bestfitmodel[1])
     self.bestfit_chi2 = float(bestfitmodel[2])
     self.bestfit_redshift = float(bestfitmodel[3])
     
     bestfitparams = fitinfo[9].strip('.#')
     bestfitparams = re.split('\.+',bestfitparams)
     bestfitresults = list(map(float,fitinfo[10].split()))
     assert len(bestfitparams) == len(bestfitresults)
     for i,paramname in enumerate(bestfitparams):
         setattr(self,self.clean_param_names(paramname),bestfitresults[i])
     
     #now working on the marginal PDF histograms for each parameter
     marginalpdfs = fitinfo[15:]
     #first, need to split the pdfs into each parameter
     self.marginal_pdfs = {}
     self.marginal_percentiles = {}
     hash_idx = []
     for i in range(len(marginalpdfs)):
         if '#' in marginalpdfs[i]:
             hash_idx.append(i)
     assert len(hash_idx) % 2 == 0
     for i in range(len(hash_idx)//2):
         param = marginalpdfs[hash_idx[2*i]].strip(' #.')
         marginal = marginalpdfs[hash_idx[2*i]+1:hash_idx[2*i+1]]
         marginal = np.array([j.split() for j in marginal],dtype=float)
         percentile = np.array(marginalpdfs[hash_idx[2*i+1]+1].split(),dtype=float)
         self.marginal_pdfs[self.clean_param_names(param)] = marginal
         self.marginal_percentiles[self.clean_param_names(param)] = percentile
         
     #now time for the SED file
     self.sed_model_params = {}
     #there are model names and params on lines 2 & 3 and 5 & 6
     modelparams = sedinfo[2].strip('.#')
     modelparams = re.split('\.+',modelparams)
     model_vals = list(map(float,sedinfo[3].split()))
     assert len(modelparams) == len(model_vals)
     for i,paramname in enumerate(modelparams):
         self.sed_model_params[self.clean_param_names(paramname)] = model_vals[i]
     modelparams = sedinfo[5].strip('.#')
     modelparams = re.split('\.+',modelparams)
     model_vals = list(map(float,sedinfo[6].split()))
     assert len(modelparams) == len(model_vals)
     for i,paramname in enumerate(modelparams):
         self.sed_model_params[self.clean_param_names(paramname)] = model_vals[i]
     #sed is from line 10 to the end. 
     #three columns, log lambda, log L_lam attenuated, log L_lam unattenuated
     model_sed = sedinfo[10:]
     model_sed = [i.split() for i in model_sed]
     self.sed_model = np.array(model_sed,dtype=float)
     self.sed_model_logwaves = self.sed_model[:,0] * u.dex(u.AA)
     self.sed_model_logluminosity_lambda = self.sed_model[:,1] * u.dex(u.Lsun / u.AA)
Esempio n. 44
0
UNIT_MAPPER = {
    "--": None,
    "BJD": None,  # TODO: optionally supprot mapping columns to Time objects
    "BKJD": None,  # TODO: optionally supprot mapping columns to Time objects
    "D_L": u.pc,
    "D_S": u.pc,
    "Earth flux": None,  # TODO: Include Earth insolation units
    "Fearth": None,  # TODO: Include Earth insolation units
    "M_E": u.M_earth,
    "M_J": u.M_jupiter,
    "R_Earth": u.R_earth,
    "R_Sun": u.R_sun,
    "Rstar": u.R_sun,
    "a_perp": u.au,
    "arc-sec/year": u.arcsec / u.yr,
    "cm/s**2": u.dex(u.dm / u.s**2),
    "days": u.day,
    "degrees": u.deg,
    "dexincgs": u.dex(u.cm / u.s**2),
    "hours": u.hr,
    "hrs": u.hr,
    "kelvin": u.K,
    "logLsun": u.dex(u.L_sun),
    "mags": u.mag,
    "microas": u.uas,
    "perc": u.percent,
    "pi_E": None,
    "pi_EE": None,
    "pi_EN": None,
    "pi_rel": None,
    "ppm": cds.ppm,
Esempio n. 45
0
def mag_to_dexmasstolight(q, cmlr_poly):
    qmag = q.to('mag')

    return np.polyval(cmlr_poly, qmag.value) * u.dex(m.m_to_l_unit)
Esempio n. 46
0
def test_pickle():
    lu1 = u.dex(u.cm/u.s**2)
    s = pickle.dumps(lu1)
    lu2 = pickle.loads(s)
    assert lu1 == lu2
Esempio n. 47
0
def make_stdtauV_vs_dMass_ssfrsd_fig(tab, sfrsd_tab, mltype='ring', mlb='i'):
    '''global-local plot: sig tau, dmass, ssfrsd
    
    [description]
    
    Parameters
    ----------
    tab : astropy.table.Table
        full aggregation results table
    sfrsd_tab : astropy.table.Table
        specific star formation rate table
    mlb : {str}, optional
        mass-to-light bandpass (the default is 'i', SDSS i-band)
    mltype : {str}
        'ring' or 'cmlr', the M/L applied to the ouside flux
        (the default is 'ring')
    '''
    merge_tab = t.join(tab, sfrsd_tab, 'plateifu')

    fig, ax, cax, hist_ax = make_panel_hcb_hist(figsize=(3, 3), dpi=300, top=.8)

    logmass_in_ifu = merge_tab['mass_in_ifu'].to(u.dex(u.Msun))
    logmass_in_ifu_lw = merge_tab['ml_fluxwt'] + merge_tab[f'logsollum_in_ifu_{mlb}']
    std_atten_mwtd = merge_tab['std_atten_mwtd']
    mean_atten_mwtd = merge_tab['mean_atten_mwtd']
    ha_corr = np.exp(merge_tab['mean_atten_mwtd'] * (6563 / 5500)**-1.3)
    sfrsd = merge_tab['sigma_sfr'] * ha_corr * u.Msun / u.yr / u.pc**2
    outer_mass = (merge_tab[f'outerml_{mltype}'] + \
                  merge_tab[f'logsollum_outer_{mlb}']).to(u.Msun)
    mass_pca = merge_tab['mass_in_ifu'].to(u.Msun) + outer_mass
    ssfrsd = sfrsd / mass_pca

    sc = ax.scatter(
        x=std_atten_mwtd, y=(logmass_in_ifu - logmass_in_ifu_lw),
        c=ssfrsd.to(u.dex(ssfrsd.unit)),
        edgecolor='k', linewidths=.125, s=1., cmap='viridis_r', alpha=0.5,
        vmin=-15., vmax=-10.)

    ax.set_ylim([-.1, 0.3])

    cb = colorbartop(fig, sc, cax)
    cb.set_label(r'$\log \frac{{\Sigma}^{\rm SFR}_{R<R_e}}{M^*_{\rm tot}}$', size='xx-small')

    ax.tick_params(which='major', labelsize='xx-small')
    ax.tick_params(which='minor', labelbottom=False, labelleft=False)
    ax.set_xscale('log')

    ax.set_xlabel(r'$\sigma_{\tau_V}$', size='x-small')
    ax.set_ylabel(r'$\log{ \frac{M^*}{M^*_{\rm LW}} ~ {\rm [dex]} }$', size='x-small')

    hist_ax.hist(np.ma.masked_invalid(logmass_in_ifu - logmass_in_ifu_lw).compressed(),
                 bins='auto', histtype='step', orientation='horizontal', linewidth=.5,
                 density=True, color='k')

    for yloc, lw, ls, c in zip(
        np.percentile(np.ma.masked_invalid(logmass_in_ifu - logmass_in_ifu_lw).compressed(),
                      [16., 50., 84.]),
        [.5, 1., .5], ['--', '-', '--'], ['gray', 'k', 'gray']):

        hist_ax.axhline(yloc, linestyle=ls, linewidth=lw, color=c)

    fig.suptitle('Mass excess from luminosity-weighting', size='x-small')
    fig.subplots_adjust(left=0.25)

    fig.savefig(
        os.path.join(csp_basedir, 'lib_diags/', 'stdtauV_dMglobloc_ssfrsd.png'),
        dpi=fig.dpi)
Esempio n. 48
0
#    'morley12': 'Morley et al. (2012)',\
#    'morley14': 'Morley et al. (2014)',\
#    'saumon12': 'Saumon et al. (2012)',\
#    'drift': 'Witte et al. (2011)'}
SPECTRAL_MODELS = {\
    'burrows06': {'name': 'Burrows et al. (2006)', 'bibcode': '2006ApJ...640.1063B', 'altnames': ['burrows','burrows2006'], 'rawfolder': HOME_FOLDER+'/models/burrows/burrows06/'}, \
    'btsettl08': {'name': 'BT-Settl (2008)', 'bibcode': '2012RSPTA.370.2765A', 'altnames': ['allard','allard12','allard2012','btsettl','btsettled','btsettl08','btsettl2008','BTSettl2008'], 'rawfolder': HOME_FOLDER+'/models/allard/cifist2011/'}, \
    'madhusudhan11': {'name': 'Madhusudhan et al. (2011)', 'bibcode': '2011ApJ...737...34M', 'altnames': ['madhu','madhusudhan','madhu11','madhu2011','madhusudhan2011'], 'rawfolder': HOME_FOLDER+'/models/burrows/burrows11/all/'}, \
    'morley12': {'name': 'Morley et al. (2012)', 'bibcode': '2012ApJ...756..172M', 'altnames': ['morley','morley2012'], 'rawfolder': HOME_FOLDER+'/models/ames/Morley12/'}, \
    'morley14': {'name': 'Morley et al. (2014)', 'bibcode': '2014ApJ...787...78M', 'altnames': ['morley2014'], 'rawfolder': HOME_FOLDER+'/models/ames/Morley14/'}, \
    'saumon12': {'name': 'Saumon et al. (2012)', 'bibcode': '2012ApJ...750...74S', 'altnames': ['saumon','saumon2012'], 'rawfolder': HOME_FOLDER+'/models/ames/Saumon12/'}, \
    'drift': {'name': 'Witte et al. (2011)', 'bibcode': '2011A&A...529A..44W', 'altnames': ['witte','witte11','witte2011','helling'], 'rawfolder': HOME_FOLDER+'/models/drift/'}}
SPECTRAL_MODEL_PARAMETERS_INORDER = ['teff','logg','z','fsed','cld','kzz']
SPECTRAL_MODEL_PARAMETERS = {\
    'teff': {'unit': u.K, 'default': 1000.0, 'title': '$T_{eff}$'}, \
    'logg': {'unit': u.dex(u.cm/u.s/u.s), 'default': 5.0, 'title': '$\log{g}$'}, \
    'z': {'unit': u.dex(), 'default': 0., 'title': '$[M/H]$'}, \
    'fsed': {'unit': u.m/u.m, 'default': 'nc', 'title': '$f_{sed}$'}, \
    'cld': {'unit': u.m/u.m, 'default': 'nc', 'title': '$cld$'}, \
    'kzz': {'unit': u.m/u.m, 'default': 'eq', 'title': '$log\ \kappa_{zz}$'}}
#    'kzz': u.dex(u.cm*u.cm/u.s), \
#    'slit': {'unit': u.arcsec, 'default': 0.5, 'title': 'slit'}}
SPECTRAL_MODEL_FLUX_UNIT = u.erg/(u.s*u.micron*(u.cm**2))
SPECTRAL_MODEL_WAVE_UNIT = u.micron
#DEFINED_MODEL_BIBCODES = {\
#    'BTSettl2008': '', \
#    'burrows06': '2006ApJ...640.1063B',\
#    'morley12': '2012ApJ...756..172M',\
#    'morley14': '2014ApJ...787...78M',\
#    'saumon12': '2012ApJ...750...74S',\
#    'drift': '2011A&A...529A..44W'}