def test_ppo(args=get_args()): env, train_envs, test_envs = make_atari_env( args.task, args.seed, args.training_num, args.test_num, scale=args.scale_obs, frame_stack=args.frames_stack, ) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # should be N_FRAMES x H x W print("Observations shape:", args.state_shape) print("Actions shape:", args.action_shape) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) # define model net = DQN(*args.state_shape, args.action_shape, device=args.device, features_only=True, output_dim=args.hidden_size) actor = Actor(net, args.action_shape, device=args.device, softmax_output=False) critic = Critic(net, device=args.device) optim = torch.optim.Adam(ActorCritic(actor, critic).parameters(), lr=args.lr) lr_scheduler = None if args.lr_decay: # decay learning rate to 0 linearly max_update_num = np.ceil( args.step_per_epoch / args.step_per_collect) * args.epoch lr_scheduler = LambdaLR( optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num) # define policy def dist(p): return torch.distributions.Categorical(logits=p) policy = PPOPolicy( actor, critic, optim, dist, discount_factor=args.gamma, gae_lambda=args.gae_lambda, max_grad_norm=args.max_grad_norm, vf_coef=args.vf_coef, ent_coef=args.ent_coef, reward_normalization=args.rew_norm, action_scaling=False, lr_scheduler=lr_scheduler, action_space=env.action_space, eps_clip=args.eps_clip, value_clip=args.value_clip, dual_clip=args.dual_clip, advantage_normalization=args.norm_adv, recompute_advantage=args.recompute_adv, ).to(args.device) if args.icm_lr_scale > 0: feature_net = DQN(*args.state_shape, args.action_shape, args.device, features_only=True) action_dim = np.prod(args.action_shape) feature_dim = feature_net.output_dim icm_net = IntrinsicCuriosityModule( feature_net.net, feature_dim, action_dim, hidden_sizes=args.hidden_sizes, device=args.device, ) icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.lr) policy = ICMPolicy(policy, icm_net, icm_optim, args.icm_lr_scale, args.icm_reward_scale, args.icm_forward_loss_weight).to(args.device) # load a previous policy if args.resume_path: policy.load_state_dict( torch.load(args.resume_path, map_location=args.device)) print("Loaded agent from: ", args.resume_path) # replay buffer: `save_last_obs` and `stack_num` can be removed together # when you have enough RAM buffer = VectorReplayBuffer( args.buffer_size, buffer_num=len(train_envs), ignore_obs_next=True, save_only_last_obs=True, stack_num=args.frames_stack, ) # collector train_collector = Collector(policy, train_envs, buffer, exploration_noise=True) test_collector = Collector(policy, test_envs, exploration_noise=True) # log now = datetime.datetime.now().strftime("%y%m%d-%H%M%S") args.algo_name = "ppo_icm" if args.icm_lr_scale > 0 else "ppo" log_name = os.path.join(args.task, args.algo_name, str(args.seed), now) log_path = os.path.join(args.logdir, log_name) # logger if args.logger == "wandb": logger = WandbLogger( save_interval=1, name=log_name.replace(os.path.sep, "__"), run_id=args.resume_id, config=args, project=args.wandb_project, ) writer = SummaryWriter(log_path) writer.add_text("args", str(args)) if args.logger == "tensorboard": logger = TensorboardLogger(writer) else: # wandb logger.load(writer) def save_best_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) def stop_fn(mean_rewards): if env.spec.reward_threshold: return mean_rewards >= env.spec.reward_threshold elif "Pong" in args.task: return mean_rewards >= 20 else: return False def save_checkpoint_fn(epoch, env_step, gradient_step): # see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html ckpt_path = os.path.join(log_path, "checkpoint.pth") torch.save({"model": policy.state_dict()}, ckpt_path) return ckpt_path # watch agent's performance def watch(): print("Setup test envs ...") policy.eval() test_envs.seed(args.seed) if args.save_buffer_name: print(f"Generate buffer with size {args.buffer_size}") buffer = VectorReplayBuffer( args.buffer_size, buffer_num=len(test_envs), ignore_obs_next=True, save_only_last_obs=True, stack_num=args.frames_stack, ) collector = Collector(policy, test_envs, buffer, exploration_noise=True) result = collector.collect(n_step=args.buffer_size) print(f"Save buffer into {args.save_buffer_name}") # Unfortunately, pickle will cause oom with 1M buffer size buffer.save_hdf5(args.save_buffer_name) else: print("Testing agent ...") test_collector.reset() result = test_collector.collect(n_episode=args.test_num, render=args.render) rew = result["rews"].mean() print(f"Mean reward (over {result['n/ep']} episodes): {rew}") if args.watch: watch() exit(0) # test train_collector and start filling replay buffer train_collector.collect(n_step=args.batch_size * args.training_num) # trainer result = onpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.repeat_per_collect, args.test_num, args.batch_size, step_per_collect=args.step_per_collect, stop_fn=stop_fn, save_best_fn=save_best_fn, logger=logger, test_in_train=False, resume_from_log=args.resume_id is not None, save_checkpoint_fn=save_checkpoint_fn, ) pprint.pprint(result) watch()
def test_qrdqn(args=get_args()): env, train_envs, test_envs = make_atari_env( args.task, args.seed, args.training_num, args.test_num, scale=args.scale_obs, frame_stack=args.frames_stack, ) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # should be N_FRAMES x H x W print("Observations shape:", args.state_shape) print("Actions shape:", args.action_shape) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) # define model net = QRDQN(*args.state_shape, args.action_shape, args.num_quantiles, args.device) optim = torch.optim.Adam(net.parameters(), lr=args.lr) # define policy policy = QRDQNPolicy(net, optim, args.gamma, args.num_quantiles, args.n_step, target_update_freq=args.target_update_freq).to( args.device) # load a previous policy if args.resume_path: policy.load_state_dict( torch.load(args.resume_path, map_location=args.device)) print("Loaded agent from: ", args.resume_path) # replay buffer: `save_last_obs` and `stack_num` can be removed together # when you have enough RAM buffer = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs), ignore_obs_next=True, save_only_last_obs=True, stack_num=args.frames_stack) # collector train_collector = Collector(policy, train_envs, buffer, exploration_noise=True) test_collector = Collector(policy, test_envs, exploration_noise=True) # log now = datetime.datetime.now().strftime("%y%m%d-%H%M%S") args.algo_name = "qrdqn" log_name = os.path.join(args.task, args.algo_name, str(args.seed), now) log_path = os.path.join(args.logdir, log_name) # logger if args.logger == "wandb": logger = WandbLogger( save_interval=1, name=log_name.replace(os.path.sep, "__"), run_id=args.resume_id, config=args, project=args.wandb_project, ) writer = SummaryWriter(log_path) writer.add_text("args", str(args)) if args.logger == "tensorboard": logger = TensorboardLogger(writer) else: # wandb logger.load(writer) def save_best_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) def stop_fn(mean_rewards): if env.spec.reward_threshold: return mean_rewards >= env.spec.reward_threshold elif "Pong" in args.task: return mean_rewards >= 20 else: return False def train_fn(epoch, env_step): # nature DQN setting, linear decay in the first 1M steps if env_step <= 1e6: eps = args.eps_train - env_step / 1e6 * \ (args.eps_train - args.eps_train_final) else: eps = args.eps_train_final policy.set_eps(eps) if env_step % 1000 == 0: logger.write("train/env_step", env_step, {"train/eps": eps}) def test_fn(epoch, env_step): policy.set_eps(args.eps_test) # watch agent's performance def watch(): print("Setup test envs ...") policy.eval() policy.set_eps(args.eps_test) test_envs.seed(args.seed) if args.save_buffer_name: print(f"Generate buffer with size {args.buffer_size}") buffer = VectorReplayBuffer(args.buffer_size, buffer_num=len(test_envs), ignore_obs_next=True, save_only_last_obs=True, stack_num=args.frames_stack) collector = Collector(policy, test_envs, buffer, exploration_noise=True) result = collector.collect(n_step=args.buffer_size) print(f"Save buffer into {args.save_buffer_name}") # Unfortunately, pickle will cause oom with 1M buffer size buffer.save_hdf5(args.save_buffer_name) else: print("Testing agent ...") test_collector.reset() result = test_collector.collect(n_episode=args.test_num, render=args.render) rew = result["rews"].mean() print(f"Mean reward (over {result['n/ep']} episodes): {rew}") if args.watch: watch() exit(0) # test train_collector and start filling replay buffer train_collector.collect(n_step=args.batch_size * args.training_num) # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, save_best_fn=save_best_fn, logger=logger, update_per_step=args.update_per_step, test_in_train=False, ) pprint.pprint(result) watch()
def test_discrete_sac(args=get_args()): env, train_envs, test_envs = make_atari_env( args.task, args.seed, args.training_num, args.test_num, scale=args.scale_obs, frame_stack=args.frames_stack, ) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # should be N_FRAMES x H x W print("Observations shape:", args.state_shape) print("Actions shape:", args.action_shape) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) # define model net = DQN(*args.state_shape, args.action_shape, device=args.device, features_only=True, output_dim=args.hidden_size) actor = Actor(net, args.action_shape, device=args.device, softmax_output=False) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) critic1 = Critic(net, last_size=args.action_shape, device=args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) critic2 = Critic(net, last_size=args.action_shape, device=args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) # define policy if args.auto_alpha: target_entropy = 0.98 * np.log(np.prod(args.action_shape)) log_alpha = torch.zeros(1, requires_grad=True, device=args.device) alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr) args.alpha = (target_entropy, log_alpha, alpha_optim) policy = DiscreteSACPolicy( actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, args.tau, args.gamma, args.alpha, estimation_step=args.n_step, reward_normalization=args.rew_norm, ).to(args.device) if args.icm_lr_scale > 0: feature_net = DQN(*args.state_shape, args.action_shape, args.device, features_only=True) action_dim = np.prod(args.action_shape) feature_dim = feature_net.output_dim icm_net = IntrinsicCuriosityModule( feature_net.net, feature_dim, action_dim, hidden_sizes=[args.hidden_size], device=args.device, ) icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.actor_lr) policy = ICMPolicy(policy, icm_net, icm_optim, args.icm_lr_scale, args.icm_reward_scale, args.icm_forward_loss_weight).to(args.device) # load a previous policy if args.resume_path: policy.load_state_dict( torch.load(args.resume_path, map_location=args.device)) print("Loaded agent from: ", args.resume_path) # replay buffer: `save_last_obs` and `stack_num` can be removed together # when you have enough RAM buffer = VectorReplayBuffer( args.buffer_size, buffer_num=len(train_envs), ignore_obs_next=True, save_only_last_obs=True, stack_num=args.frames_stack, ) # collector train_collector = Collector(policy, train_envs, buffer, exploration_noise=True) test_collector = Collector(policy, test_envs, exploration_noise=True) # log now = datetime.datetime.now().strftime("%y%m%d-%H%M%S") args.algo_name = "discrete_sac_icm" if args.icm_lr_scale > 0 else "discrete_sac" log_name = os.path.join(args.task, args.algo_name, str(args.seed), now) log_path = os.path.join(args.logdir, log_name) # logger if args.logger == "wandb": logger = WandbLogger( save_interval=1, name=log_name.replace(os.path.sep, "__"), run_id=args.resume_id, config=args, project=args.wandb_project, ) writer = SummaryWriter(log_path) writer.add_text("args", str(args)) if args.logger == "tensorboard": logger = TensorboardLogger(writer) else: # wandb logger.load(writer) def save_best_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) def stop_fn(mean_rewards): if env.spec.reward_threshold: return mean_rewards >= env.spec.reward_threshold elif "Pong" in args.task: return mean_rewards >= 20 else: return False def save_checkpoint_fn(epoch, env_step, gradient_step): # see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html ckpt_path = os.path.join(log_path, "checkpoint.pth") torch.save({"model": policy.state_dict()}, ckpt_path) return ckpt_path # watch agent's performance def watch(): print("Setup test envs ...") policy.eval() test_envs.seed(args.seed) if args.save_buffer_name: print(f"Generate buffer with size {args.buffer_size}") buffer = VectorReplayBuffer( args.buffer_size, buffer_num=len(test_envs), ignore_obs_next=True, save_only_last_obs=True, stack_num=args.frames_stack, ) collector = Collector(policy, test_envs, buffer, exploration_noise=True) result = collector.collect(n_step=args.buffer_size) print(f"Save buffer into {args.save_buffer_name}") # Unfortunately, pickle will cause oom with 1M buffer size buffer.save_hdf5(args.save_buffer_name) else: print("Testing agent ...") test_collector.reset() result = test_collector.collect(n_episode=args.test_num, render=args.render) rew = result["rews"].mean() print(f"Mean reward (over {result['n/ep']} episodes): {rew}") if args.watch: watch() exit(0) # test train_collector and start filling replay buffer train_collector.collect(n_step=args.batch_size * args.training_num) # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size, stop_fn=stop_fn, save_best_fn=save_best_fn, logger=logger, update_per_step=args.update_per_step, test_in_train=False, resume_from_log=args.resume_id is not None, save_checkpoint_fn=save_checkpoint_fn, ) pprint.pprint(result) watch()