Esempio n. 1
0
def main(arg):
    """
    main
    """
    # 初始化资源相关语句
    acl_resource = AclResource()
    acl_resource.init()
    # 初始化推理的类
    classify = Classify(MODEL_PATH)
    ret = classify.init()
    utils.check_ret("Classify init ", ret)
    # 得到测试样本及其类标签
    print(f"================正在加载测试集数据================")
    all_test_data, test_label = load_data(DATA_PATH)
    print(f"================测试集数据加载完毕================")
    # print(list(test_label).count(0))  # 类标签为0的测试集样本数量
    # 调制分类推理,依次预测每一个信号的调制类型
    print(f"=====================开始推理=====================")
    for now_num in range(arg.start_num, arg.end_num):
        initial_result = classify.inference(all_test_data[now_num, :, :, :])
        result = initial_result[0]  # 每一类的可能性大小(定性)
        # print(result)
        result = result.flatten()
        # x.argsort(),将x中的元素从小到大排列,返回其对应的索引
        pre_index = result.argsort()[-1]  # 可能性最大的类别的索引
        final_result = modulation_type[pre_index]  # 预测标签,即预测的测试样本的调制类型
        true_label = modulation_type[test_label[now_num]]
        print(
            f"================编号为{now_num}的信号的预测的调制类型为:{final_result},实际的调制类型为:{true_label}================"
        )
        with open("./result_modulation_type.csv", 'a', newline='') as t2:
            writer_train2 = csv.writer(t2)
            writer_train2.writerow([now_num, final_result, true_label])
Esempio n. 2
0
def main():
    if (len(sys.argv) != 2):
        print("The App arg is invalid")
        exit(1)

    acl_resource = AclResource()
    acl_resource.init()
    model = Model(MODEL_PATH)
    dvpp = Dvpp(acl_resource)

    image_dir = sys.argv[1]
    images_list = [
        os.path.join(image_dir, img) for img in os.listdir(image_dir)
        if os.path.splitext(img)[1] in const.IMG_EXT
    ]

    #Create a directory to store the inference results
    if not os.path.isdir(os.path.join(SRC_PATH, "../outputs")):
        os.mkdir(os.path.join(SRC_PATH, "../outputs"))

    image_info = construct_image_info()
    for image_file in images_list:
        image = AclImage(image_file)
        resized_image = pre_process(image, dvpp)
        print("pre process end")

        result = model.execute([
            resized_image,
        ])
        post_process(result, image_file)

        print("process " + image_file + " end")
Esempio n. 3
0
def main():
    """
    main
    """
    if (len(sys.argv) != 2):
        print("The App arg is invalid")
        exit(1)

    acl_resource = AclResource()
    acl_resource.init()
    model = Model(MODEL_PATH)

    data_dir = sys.argv[1]
    data_list = [
        os.path.join(data_dir, testdata) for testdata in os.listdir(data_dir)
        if os.path.splitext(testdata)[1] in ['.bin']
    ]

    #Create a directory to store the inference results
    if not os.path.isdir(os.path.join(SRC_PATH, "../outputs")):
        os.mkdir(os.path.join(SRC_PATH, "../outputs"))

    for data_file in data_list:
        data_raw = np.fromfile(data_file, dtype=np.float32)
        input_data = data_raw.reshape(16, MODEL_WIDTH, MODEL_HEIGHT, 3).copy()
        result = model.execute([
            input_data,
        ])
        post_process(result, data_file)

    print("process  end")
Esempio n. 4
0
def main():
    """
    Program execution
    """
    if not os.path.exists(OUTPUT_DIR):
        os.mkdir(OUTPUT_DIR)

    acl_resource = AclResource()  # acl intialize
    acl_resource.init()

    model = Model(model_path)  # load model

    src_dir = os.listdir(INPUT_DIR)
    for pic in src_dir:
        if not pic.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')):
            print('it is not a picture, %s, ignore this file and continue,' % pic)
            continue
        pic_path = os.path.join(INPUT_DIR, pic)
        RGB_image, o_h, o_w = pre_process(pic_path)  # preprocess

        start_time = time.time()
        result_list = model.execute([RGB_image, ])  # inferring
        end_time = time.time()
        print('pic:{}'.format(pic))
        print('pic_size:{}x{}'.format(o_h, o_w))
        print('time:{}ms'.format(int((end_time - start_time) * 1000)))
        print('\n')
        post_process(result_list, pic, o_h, o_w)  # postprocess
    print('task over')
Esempio n. 5
0
def main():
    """
    Program execution with picture directory parameters
    """
    
    if (len(sys.argv) != 2):
        print("The App arg is invalid")
        exit(1)
    
    acl_resource = AclResource()
    acl_resource.init()
    model = Model(MODEL_PATH)
    dvpp = Dvpp(acl_resource)
    
    #From the parameters of the picture storage directory, reasoning by a picture
    image_dir = sys.argv[1]
    images_list = [os.path.join(image_dir, img)
                   for img in os.listdir(image_dir)
                   if os.path.splitext(img)[1] in const.IMG_EXT]
    #Create a directory to store the inference results
    if not os.path.isdir('../outputs'):
        os.mkdir('../outputs')

    image_info = construct_image_info()

    for image_file in images_list:
        #read picture
        image = AclImage(image_file)
        #preprocess image
        resized_image = pre_process(image, dvpp)
        print("pre process end")
        #reason pictures
        result = model.execute([resized_image, image_info])    
        #process resresults
        post_process(result, image, image_file)
Esempio n. 6
0
def main():

    acl_resource = AclResource()
    acl_resource.init()
    
    mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)
    
    #load model
    model = Model(model_path)
    
    images = mnist.test.images
    labels = mnist.test.labels
    total = len(images)
    correct = 0.0
    
    start = time.time()
    for i in  range(len(images)):
        result = model.execute([images[i]])
        label = labels[i]
        if np.argmax(result[0])==np.argmax(label):
            correct+=1.0
        if i%1000==0:
            print(f'infer {i+1} pics...')
    end = time.time()
    print(f'infer finished, acc is {correct/total}, use time {(end-start)*1000}ms')
Esempio n. 7
0
def main():
    """main"""
    #acl init
    if (len(sys.argv) != 2):
        print("The App arg is invalid")
        exit(1)
    acl_resource = AclResource()
    acl_resource.init()
    model = Model(MODEL_PATH)
    dvpp = Dvpp(acl_resource)

    #From the parameters of the picture storage directory, reasoning by a picture
    image_dir = sys.argv[1]
    images_list = [
        os.path.join(image_dir, img) for img in os.listdir(image_dir)
        if os.path.splitext(img)[1] in const.IMG_EXT
    ]

    if not os.path.isdir(os.path.join(SRC_PATH, "../outputs")):
        os.mkdir(os.path.join(SRC_PATH, "../outputs"))

    #infer picture
    for pic in images_list:
        #get pic data
        orig_shape, l_data = preprocess(pic)

        #inference
        result_list = model.execute([l_data])

        #postprocess
        postprocess(result_list, pic, orig_shape, pic)
    print("Execute end")
Esempio n. 8
0
def main():

    if not os.path.exists(OUTPUT_DIR):
        os.mkdir(OUTPUT_DIR)
    #ACL resource initialization
    acl_resource = AclResource()
    acl_resource.init()
    #load model
    model = Model(MODEL_PATH)
    images_list = [
        os.path.join(INPUT_DIR, img) for img in os.listdir(INPUT_DIR)
        if os.path.splitext(img)[1] in const.IMG_EXT
    ]
    #Read images from the data directory one by one for reasoning
    for pic in images_list:
        #read image

        bgr_img = cv.imread(pic)
        #preprocess
        data, orig = preprocess(pic)
        #data, orig = preprocess(bgr_img)
        #Send into model inference
        result_list = model.execute([
            data,
        ])
        #Process inference results
        result_return = post_process(result_list, orig)

        print("result = ", result_return)

        for i in range(len(result_return['detection_classes'])):
            box = result_return['detection_boxes'][i]
            class_name = result_return['detection_classes'][i]
            confidence = result_return['detection_scores'][i]
            cv.rectangle(bgr_img, (int(box[1]), int(box[0])),
                         (int(box[3]), int(box[2])), colors[i % 6])
            p3 = (max(int(box[1]), 15), max(int(box[0]), 15))
            out_label = class_name
            cv.putText(bgr_img, out_label, p3, cv.FONT_ITALIC, 0.6,
                       colors[i % 6], 1)

        output_file = os.path.join(OUTPUT_DIR, "out_" + os.path.basename(pic))
        print("output:%s" % output_file)
        cv.imwrite(output_file, bgr_img)

    print("Execute end")
Esempio n. 9
0
def main():
    if not os.path.exists(OUTPUT_DIR):
        os.mkdir(OUTPUT_DIR)
    #ACL resource initialization
    acl_resource = AclResource()
    acl_resource.init()
    #load model
    model = Model(MODEL_PATH)
    images_list = [os.path.join(INPUT_DIR, img)
                   for img in os.listdir(INPUT_DIR)
                   if os.path.splitext(img)[1] in const.IMG_EXT]
    #Read images from the data directory one by one for reasoning
    for pic in images_list:
        #read image
        bgr_img = cv.imread(pic)
        #preprocess
        data, orig = preprocess(pic)
        #Send into model inference
        result_list = model.execute([data,])
        #Process inference results
        result_return = post_process(result_list, orig)
        print("result = ", result_return)
        #Process lane line
        frame_with_lane = preprocess_frame(bgr_img)
        distance = np.zeros(shape=(len(result_return['detection_classes']), 1))

        for i in range(len(result_return['detection_classes'])):
            box = result_return['detection_boxes'][i]
            class_name = result_return['detection_classes'][i]
            confidence = result_return['detection_scores'][i]
            distance[i] = calculate_position(bbox=box, transform_matrix=perspective_transform,
                        warped_size=WARPED_SIZE, pix_per_meter=pixels_per_meter)
            label_dis = '{} {:.2f}m'.format('dis:', distance[i][0])
            cv.putText(frame_with_lane, label_dis, (int(box[1]) + 10, int(box[2]) + 15), 
                        cv.FONT_ITALIC, 0.6, colors[i % 6], 1)

            cv.rectangle(frame_with_lane, (int(box[1]), int(box[0])), (int(box[3]), int(box[2])), colors[i % 6])
            p3 = (max(int(box[1]), 15), max(int(box[0]), 15))
            out_label = class_name
            cv.putText(frame_with_lane, out_label, p3, cv.FONT_ITALIC, 0.6, colors[i % 6], 1)

        output_file = os.path.join(OUTPUT_DIR, "out_" + os.path.basename(pic))
        print("output:%s" % output_file)
        cv.imwrite(output_file, frame_with_lane)
    print("Execute end")
Esempio n. 10
0
def main():
    """
    main
    """
    image_dir = os.path.join(currentPath, "data")

    images_list = [
        os.path.join(image_dir, img) for img in os.listdir(image_dir)
        if os.path.splitext(img)[1] in const.IMG_EXT
    ]

    acl_resource = AclResource()
    acl_resource.init()

    edge_detection = EdgeDetection(MODEL_PATH, MODEL_WIDTH, MODEL_HEIGHT)
    ret = edge_detection.init()
    utils.check_ret("edge_detection init ", ret)

    # Create a directory to save inference results
    if not os.path.exists(OUTPUT_DIR):
        os.mkdir(OUTPUT_DIR)

    for image_file in images_list:
        image_name = os.path.basename(image_file)
        print('====' + image_name + '====')

        # read image
        im = Image.open(image_file)
        if len(im.split()) != 3:
            print('warning: "{}" is not a color image and will be ignored'.
                  format(image_file))
            continue

        # Preprocess the picture
        resized_image = edge_detection.pre_process(im)

        # Inferencecd
        result = edge_detection.inference([
            resized_image,
        ])

        # # Post-processing
        edge_detection.post_process(result, image_name)
Esempio n. 11
0
def main():
    """main"""
    #Initialize acl
    acl_resource = AclResource()
    acl_resource.init()
    #Create a detection network instance, currently using the vgg_ssd network.
    # When the detection network is replaced, instantiate a new network here
    detect = VggSsd(acl_resource, MODEL_WIDTH, MODEL_HEIGHT)
    #Load offline model
    model = Model(MODEL_PATH)
    #Connect to the presenter server according to the configuration,
    # and end the execution of the application if the connection fails
    chan = presenteragent.presenter_channel.open_channel(FACE_DETEC_CONF)
    if chan is None:
        print("Open presenter channel failed")
        return
    #Open the CARAMER0 camera on the development board
    cap = Camera(0)
    while True:
        #Read a picture from the camera
        image = cap.read()
        if image is None:
            print("Get memory from camera failed")
            break

        #The detection network processes images into model input data
        model_input = detect.pre_process(image)
        if model_input is None:
            print("Pre process image failed")
            break
        #Send data to offline model inference
        result = model.execute(model_input)
        #Detecting network analysis inference output
        jpeg_image, detection_list = detect.post_process(result, image)
        if jpeg_image is None:
            print("The jpeg image for present is None")
            break

        chan.send_detection_data(CAMERA_FRAME_WIDTH, CAMERA_FRAME_HEIGHT,
                                 jpeg_image, detection_list)
Esempio n. 12
0
def main():
    # check param
    if (len(sys.argv) != 2):
        print("The App arg is invalid")
        exit(1)

    # get all pictures
    image_dir = sys.argv[1]
    images_list = [
        os.path.join(image_dir, img) for img in os.listdir(image_dir)
        if os.path.splitext(img)[1] in const.IMG_EXT
    ]

    acl_resource = AclResource()
    acl_resource.init()

    # instantiation Cartoonization object
    cartoonization = Cartoonization(MODEL_PATH, MODEL_WIDTH, MODEL_HEIGHT)

    # init
    ret = cartoonization.init()
    utils.check_ret("Cartoonization.init ", ret)

    # create dir to save result
    if not os.path.isdir('../outputs'):
        os.mkdir('../outputs')

    for image_file in images_list:
        # read image
        image = AclImage(image_file)
        # preprocess
        crop_and_paste_image = cartoonization.pre_process(image)
        print("[Sample] pre process end")
        # inference
        result = cartoonization.inference([
            crop_and_paste_image,
        ])
        # postprocess
        cartoonization.post_process(result, image_file, image)
Esempio n. 13
0
def main():
    """
    main
    """
    image_dir = os.path.join(currentPath, "data")

    if not os.path.exists(OUTPUT_DIR):
        os.mkdir(OUTPUT_DIR)

    acl_resource = AclResource()
    acl_resource.init()

    classify = Classify(MODEL_PATH, MODEL_WIDTH, MODEL_HEIGHT)
    ret = classify.init()
    utils.check_ret("Classify init ", ret)

    images_list = [
        os.path.join(image_dir, img) for img in os.listdir(image_dir)
        if os.path.splitext(img)[1] in const.IMG_EXT
    ]

    for image_file in images_list:
        print('=== ' + os.path.basename(image_file) + '===')

        # read image
        image = AclImage(image_file)

        # Preprocess the picture
        resized_image = classify.pre_process(image)

        # Inferencecd
        result = classify.inference([
            resized_image,
        ])

        # # Post-processing
        classify.post_process(result, image_file)
Esempio n. 14
0
def main(opt):
    acl_resource = AclResource()
    acl_resource.init()

    mot_model = Model('../model/dlav0.om')

    # Create output dir if not exist; default outputs
    result_root = opt.output_root if opt.output_root != '' else '.'
    mkdir_if_missing(result_root)

    video_name = os.path.basename(opt.input_video).replace(' ',
                                                           '_').split('.')[0]

    # setup dataloader, use LoadVideo or LoadImages
    dataloader = LoadVideo(opt.input_video, (1088, 608))
    # result_filename = os.path.join(result_root, 'results.txt')
    frame_rate = dataloader.frame_rate

    # dir for output images; default: outputs/'VideoFileName'
    save_dir = os.path.join(result_root, video_name)
    if save_dir and os.path.exists(save_dir) and opt.rm_prev:
        shutil.rmtree(save_dir)
    mkdir_if_missing(save_dir)

    # initialize tracker
    tracker = JDETracker(opt, mot_model, frame_rate=frame_rate)
    timer = Timer()
    results = []

    # img:  h w c; 608 1088 3
    # img0: c h w; 3 608 1088
    for frame_id, (path, img, img0) in enumerate(dataloader):
        if frame_id % 20 == 0:
            print('Processing frame {} ({:.2f} fps)'.format(
                frame_id, 1. / max(1e-5, timer.average_time)))

        # run tracking, start tracking timer
        timer.tic()

        # list of Tracklet; see multitracker.STrack
        online_targets = tracker.update(np.array([img]), img0)

        # prepare for drawing, get all bbox and id
        online_tlwhs = []
        online_ids = []
        for t in online_targets:
            tlwh = t.tlwh
            tid = t.track_id
            vertical = tlwh[2] / tlwh[3] > 1.6
            if tlwh[2] * tlwh[3] > opt.min_box_area and not vertical:
                online_tlwhs.append(tlwh)
                online_ids.append(tid)
        timer.toc()

        # draw bbox and id
        online_im = vis.plot_tracking(img0,
                                      online_tlwhs,
                                      online_ids,
                                      frame_id=frame_id,
                                      fps=1. / timer.average_time)
        cv2.imwrite(os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)),
                    online_im)
Esempio n. 15
0
def main():
    if (len(sys.argv) != 2):
        print("Please input video path")
        exit(1)

    #ACL resource initialization
    acl_resource = AclResource()
    acl_resource.init()
    #load model
    model = Model(MODEL_PATH)

    #open video
    video_path = sys.argv[1]
    print("open video ", video_path)
    cap = cv.VideoCapture(video_path)
    fps = cap.get(cv.CAP_PROP_FPS)
    Width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
    Height = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))

    lf.set_img_size((Width, Height))

    #create output directory
    if not os.path.exists(OUTPUT_DIR):
        os.mkdir(OUTPUT_DIR)
    output_Video = os.path.basename(video_path)
    output_Video = os.path.join(OUTPUT_DIR, output_Video)

    fourcc = cv.VideoWriter_fourcc(*'mp4v')  # DIVX, XVID, MJPG, X264, WMV1, WMV2
    outVideo = cv.VideoWriter(output_Video, fourcc, fps, (Width, Height))

    # Read until video is completed
    while (cap.isOpened()):
        ret, frame = cap.read()
        if ret == True:
            #preprocess
            data, orig = preprocess(frame)
            #Send into model inference
            result_list = model.execute([data,])
            #Process inference results
            result_return = post_process(result_list, orig)
            print("result = ", result_return)
            #Process lane line
            frame_with_lane = preprocess_frame(frame)

            distance = np.zeros(shape=(len(result_return['detection_classes']), 1))
            for i in range(len(result_return['detection_classes'])):
                box = result_return['detection_boxes'][i]
                class_name = result_return['detection_classes'][i]
                confidence = result_return['detection_scores'][i]
                distance[i] = calculate_position(bbox=box, transform_matrix=perspective_transform,
                            warped_size=WARPED_SIZE, pix_per_meter=pixels_per_meter)
                label_dis = '{} {:.2f}m'.format('dis:', distance[i][0])
                cv.putText(frame_with_lane, label_dis, (int(box[1]) + 10, int(box[2]) + 15), 
                            cv.FONT_ITALIC, 0.6, colors[i % 6], 1)

                cv.rectangle(frame_with_lane, (int(box[1]), int(box[0])), (int(box[3]), int(box[2])), colors[i % 6])
                p3 = (max(int(box[1]), 15), max(int(box[0]), 15))
                out_label = class_name
                cv.putText(frame_with_lane, out_label, p3, cv.FONT_ITALIC, 0.6, colors[i % 6], 1)

            outVideo.write(frame_with_lane)
        # Break the loop
        else:
            break
    cap.release()
    outVideo.release()
    print("Execute end")
Esempio n. 16
0
def main():
    """main"""
    if (len(sys.argv) != 2):
        print("The App arg is invalid")
        exit(1)

    acl_resource = AclResource()
    acl_resource.init()
    model = Model(MODEL_PATH)
    dvpp = Dvpp(acl_resource)

    image_dir = sys.argv[1]
    images_list = [
        os.path.join(image_dir, img) for img in os.listdir(image_dir)
        if os.path.splitext(img)[1] in const.IMG_EXT
    ]

    # Create a directory to save inference results
    if not os.path.isdir('./outputs'):
        os.mkdir('./outputs')

    # Create a directory to save the intermediate results of the large image detection
    if not os.path.isdir('./bigpic'):
        os.mkdir('./bigpic')

    # Create a directory to save the results of the big picture cropping inference
    outCrop = os.path.join('./bigpic', 'output')
    if not os.path.isdir(outCrop):
        os.mkdir(outCrop)

    # Create a directory, save the large and cropped pictures
    cropImg = os.path.join('./bigpic', 'cropimg')
    if not os.path.isdir(cropImg):
        os.mkdir(cropImg)

    image_info = construct_image_info()

    for image_file in images_list:
        imagename = get_file_name(image_file)
        tempfile = os.path.splitext(imagename)[0]

        imgdic = {}
        imgdic['name'] = imagename
        obj_res = []

        img = cv2.imread(image_file, -1)
        (width, height, depth) = img.shape
        if width > 1000 and height > 1000:
            # Create a directory to save the divided pictures of each big picture
            crop_target = os.path.join(cropImg, tempfile)
            if not os.path.isdir(crop_target):
                os.mkdir(crop_target)

            # Create a directory to save the inference results of each large image
            out_target = os.path.join(outCrop, tempfile)
            if not os.path.isdir(out_target):
                os.mkdir(out_target)

            # Large image clipping function
            crop_picture(image_file, crop_target)
            cropimg_list = [
                os.path.join(crop_target, imgs)
                for imgs in os.listdir(crop_target)
                if os.path.splitext(imgs)[1] in const.IMG_EXT
            ]

            # After the execution of the crop function is over,
            # the small picture after the big picture crop should be saved in a folder crop_target
            for cropimg_file in cropimg_list:
                print("the crop filename is :\t", cropimg_file)
                image = AclImage(cropimg_file)
                resized_image = pre_process(image, dvpp)
                result = model.execute([resized_image, image_info])
                resdic = post_process_big(result, image, cropimg_file,
                                          out_target)
                obj_res.extend(resdic)

            imgdic['object_result'] = obj_res

            merge_picture(out_target, tempfile)

        # Read in the picture, if the picture size is less than 1000x1000,
        # it will be read in and processed normally
        else:
            print("detect the small picture")
            image = AclImage(image_file)
            resized_image = pre_process(image, dvpp)
            print("pre process end")
            result = model.execute([resized_image, image_info])
            resdic = post_process(result, image, image_file)
            obj_res.extend(resdic)
            imgdic['object_result'] = obj_res
Esempio n. 17
0
        print("result = ", inference_result)
        print("preprocess cost:", t2 - t1)
        print("forward cost:", t3 - t2)
        print("post process cost:", t4 - t3)
        print("FPS:", 1 / (t4 - t1))
        print("*" * 40)

        return inference_result
    else:
        return dict()


if __name__ == "__main__":
    # acl resource init
    acl_resource = AclResource()
    acl_resource.init()

    # load om model
    yolov3_model = Model(MODEL_PATH)

    # send the multicast message
    multicast_group = (LOCAL_IP_ADDRESS, PORT)
    sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    connections = {}

    try:
        # Send data to the multicast group
        print('sending "%s"' % 'EtherSensePing' + str(multicast_group))
        sent = sock.sendto('EtherSensePing'.encode(), multicast_group)

        # defer waiting for a response using Asyncore