Esempio n. 1
0
def test_stack_predictions_regression():
    """Assert that the prediction methods work for regression tasks."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.clean()
    atom.run(models=["Tree"])
    atom.branch = "branch_2"
    atom.impute(strat_num="mean", strat_cat="most_frequent")
    atom.run(["PA"])
    atom.stacking(models=["Tree", "PA"], passthrough=True)
    assert isinstance(atom.stack.predict(X_reg), np.ndarray)
    assert isinstance(atom.stack.score(X_reg, y_reg), np.float64)
Esempio n. 2
0
def test_plot_probabilities():
    """Assert that the plot_probabilities method work as intended."""
    atom = ATOMRegressor(X_reg, y_reg, random_state=1)
    atom.run("Ridge")
    pytest.raises(PermissionError,
                  atom.plot_probabilities)  # Task is not classif

    y = ["a" if i == 0 else "b" for i in y_bin]
    atom = ATOMClassifier(X_bin, y, random_state=1)
    atom.clean()  # Encode the target column
    pytest.raises(NotFittedError, atom.plot_probabilities)
    atom.run(["Tree", "LGB", "PA"], metric="f1")
    pytest.raises(AttributeError,
                  atom.pa.plot_probabilities)  # No predict_proba
    atom.plot_probabilities(models=["Tree", "LGB"], target="a", display=False)
    atom.lgb.plot_probabilities(target="b", display=False)