Esempio n. 1
0
        # This is an example health-check, which can be used to tell other elements that depend on you
        # whether you are ready to receive commands or not. Any non-zero error code means you are unhealthy.
        return Response(err_code=0, err_str="Everything is good")


if __name__ == "__main__":
    print("Launching...")
    # Create our element and call it "atombot"
    element = Element("atombot")

    # Instantiate our AtomBot class
    atombot = AtomBot()

    # We add a healthcheck to our atombot element.
    # This is optional. If you don't do this, atombot is assumed healthy as soon as its command_loop executes
    element.healthcheck_set(atombot.is_healthy)

    # This registers the relevant AtomBot methods as a command in the atom system
    # We set the timeout so the caller will know how long to wait for the command to execute
    element.command_add("move_left",
                        atombot.move_left,
                        timeout=50,
                        deserialize=True)
    element.command_add("move_right",
                        atombot.move_right,
                        timeout=50,
                        deserialize=True)
    # Transform takes no inputs, so there's nothing to deserialize
    element.command_add("transform", atombot.transform, timeout=50)

    # We create a thread and run the command loop which will constantly check for incoming commands from atom
Esempio n. 2
0
class Realsense:

    def __init__(
        self,
        element_name,
        transform_file_path,
        calibration_client_path,
        depth_shape,
        color_shape,
        fps,
        disparity_shift,
        depth_units,
        rotation,
        retry_delay
    ):
        self._transform_file_path = transform_file_path
        self._calibration_client_path = calibration_client_path
        self._depth_shape = depth_shape
        self._color_shape = color_shape
        self._fps = fps
        self.disparity_shift = disparity_shift
        self.depth_units = depth_units
        self._rotation = rotation
        self._retry_delay = retry_delay

        self._status_is_running = False
        self._status_lock = Lock()
        self._pipeline = rs.pipeline()
        self._rs_pc = rs.pointcloud()
        self._transform = TransformStreamContract(x=0, y=0, z=0, qx=0, qy=0, qz=0, qw=1)
        self._transform_last_loaded = 0

        # Create an align object: rs.align allows us to perform alignment of depth frames to other frames
        self._align = rs.align(rs.stream.color)

        # Init element
        self._element = Element(element_name)
        self._element.healthcheck_set(self.is_healthy)
        self._element.command_add(
            CalculateTransformCommand.COMMAND_NAME,
            self.run_transform_estimator,
            timeout=2000,
            deserialize=CalculateTransformCommand.Request.SERIALIZE
        )

        # Run command loop
        thread = Thread(target=self._element.command_loop, daemon=True)
        thread.start()

    def is_healthy(self):
        """
        Reports whether the realsense is connected and streaming or not
        """
        try:
            self._status_lock.acquire()
            if self._status_is_running:
                return Response(err_code=0, err_str="Realsense online")
            else:
                return Response(err_code=1, err_str="Waiting for realsense")
        finally:
            self._status_lock.release()

    def load_transform_from_file(self, fname):
        """
        Opens specified file, reads transform, and returns as list.

        Args:
            fname (str): CSV file that stores the transform
        """
        with open(fname, "r") as f:
            transform_list = [float(v) for v in f.readlines()[-1].split(",")]
            return TransformStreamContract(
                x=transform_list[0],
                y=transform_list[1],
                z=transform_list[2],
                qx=transform_list[3],
                qy=transform_list[4],
                qz=transform_list[5],
                qw=transform_list[6]
            )

    def run_transform_estimator(self, *args):
        """
        Runs the transform estimation procedure, which saves the transform to disk.
        """
        process = subprocess.Popen(self._calibration_client_path, stderr=subprocess.PIPE)
        out, err = process.communicate()
        return Response(
            data=CalculateTransformCommand.Response().to_data(),
            err_code=process.returncode,
            err_str=err.decode(),
            serialize=CalculateTransformCommand.Response.SERIALIZE
        )

    def run_camera_stream(self):
        while True:
            try:
                # Try to establish realsense connection
                self._element.log(LogLevel.INFO, "Attempting to connect to Realsense")

                # Set disparity shift
                device = rs.context().query_devices()[0]
                advnc_mode = rs.rs400_advanced_mode(device)
                depth_table_control_group = advnc_mode.get_depth_table()
                depth_table_control_group.disparityShift = self.disparity_shift
                advnc_mode.set_depth_table(depth_table_control_group)

                # Attempt to stream accel and gyro data, which requires d435i
                # If we can't then we revert to only streaming depth and color
                try:
                    config = rs.config()
                    config.enable_stream(
                        rs.stream.depth, self._depth_shape[0], self._depth_shape[1], rs.format.z16, self._fps
                    )
                    config.enable_stream(
                        rs.stream.color, self._color_shape[0], self._color_shape[1], rs.format.bgr8, self._fps
                    )
                    config.enable_stream(rs.stream.accel)
                    config.enable_stream(rs.stream.gyro)
                    profile = self._pipeline.start(config)
                    is_d435i = True
                except RuntimeError:
                    config = rs.config()
                    config.enable_stream(
                        rs.stream.depth, self._depth_shape[0], self._depth_shape[1], rs.format.z16, self._fps
                    )
                    config.enable_stream(
                        rs.stream.color, self._color_shape[0], self._color_shape[1], rs.format.bgr8, self._fps
                    )
                    profile = self._pipeline.start(config)
                    is_d435i = False

                # Set depth units
                depth_sensor = profile.get_device().first_depth_sensor()
                depth_sensor.set_option(rs.option.depth_units, self.depth_units)

                # Publish intrinsics
                rs_intrinsics = profile.get_stream(rs.stream.color).as_video_stream_profile().get_intrinsics()
                intrinsics = IntrinsicsStreamContract(
                    width=rs_intrinsics.width,
                    height=rs_intrinsics.height,
                    ppx=rs_intrinsics.ppx,
                    ppy=rs_intrinsics.ppy,
                    fx=rs_intrinsics.fx,
                    fy=rs_intrinsics.fy
                )
                self._element.entry_write(
                    IntrinsicsStreamContract.STREAM_NAME,
                    intrinsics.to_dict(),
                    serialize=IntrinsicsStreamContract.SERIALIZE,
                    maxlen=self._fps
                )

                try:
                    self._status_lock.acquire()
                    self._status_is_running = True
                finally:
                    self._status_lock.release()

                self._element.log(LogLevel.INFO, "Realsense connected and streaming")
                while True:
                    start_time = time.time()

                    frames = self._pipeline.wait_for_frames()
                    aligned_frames = self._align.process(frames)
                    depth_frame = aligned_frames.get_depth_frame()
                    color_frame = aligned_frames.get_color_frame()

                    # Validate that frames are valid
                    if not depth_frame or not color_frame:
                        continue

                    # Generate realsense pointcloud
                    self._rs_pc.map_to(color_frame)
                    points = self._rs_pc.calculate(depth_frame)

                    # Convert data to numpy arrays
                    depth_image = np.asanyarray(depth_frame.get_data())
                    color_image = np.asanyarray(color_frame.get_data())
                    vertices = np.asanyarray(points.get_vertices())

                    vertices = vertices.view(np.float32).reshape(vertices.shape + (-1,))

                    if self._rotation is not None:
                        depth_image = np.rot90(depth_image, k=self._rotation / 90)
                        color_image = np.rot90(color_image, k=self._rotation / 90)
                        # TODO: Apply rotation to pointcloud

                    _, color_serialized = cv2.imencode(".tif", color_image)
                    _, depth_serialized = cv2.imencode(".tif", depth_image)
                    _, pc_serialized = cv2.imencode(".tif", vertices)

                    if is_d435i:
                        accel = frames[2].as_motion_frame().get_motion_data()
                        gyro = frames[3].as_motion_frame().get_motion_data()
                        accel_data = AccelStreamContract(x=accel.x, y=accel.y, z=accel.z)
                        gyro_data = GyroStreamContract(x=gyro.x, y=gyro.y, z=gyro.z)
                        self._element.entry_write(
                            AccelStreamContract.STREAM_NAME,
                            accel_data.to_dict(),
                            serialize=AccelStreamContract.SERIALIZE,
                            maxlen=self._fps
                        )
                        self._element.entry_write(
                            GyroStreamContract.STREAM_NAME,
                            gyro_data.to_dict(),
                            serialize=GyroStreamContract.SERIALIZE,
                            maxlen=self._fps
                        )

                    color_contract = ColorStreamContract(data=color_serialized.tobytes())
                    depth_contract = DepthStreamContract(data=depth_serialized.tobytes())
                    pc_contract = PointCloudStreamContract(data=pc_serialized.tobytes())
                    self._element.entry_write(
                        ColorStreamContract.STREAM_NAME,
                        color_contract.to_dict(),
                        serialize=ColorStreamContract.SERIALIZE,
                        maxlen=self._fps
                    )
                    self._element.entry_write(
                        DepthStreamContract.STREAM_NAME,
                        depth_contract.to_dict(),
                        serialize=DepthStreamContract.SERIALIZE,
                        maxlen=self._fps
                    )
                    self._element.entry_write(
                        PointCloudStreamContract.STREAM_NAME,
                        pc_contract.to_dict(),
                        serialize=PointCloudStreamContract.SERIALIZE,
                        maxlen=self._fps
                    )

                    # Load transform from file if the file exists
                    # and has been modified since we last checked
                    if os.path.exists(self._transform_file_path):
                        transform_last_modified = os.stat(self._transform_file_path).st_mtime
                        if transform_last_modified > self._transform_last_loaded:
                            try:
                                self._transform = self.load_transform_from_file(self._transform_file_path)
                                self._transform_last_loaded = time.time()
                            except Exception as e:
                                self._element.log(LogLevel.ERR, str(e))
                    self._element.entry_write(
                        TransformStreamContract.STREAM_NAME,
                        self._transform.to_dict(),
                        serialize=TransformStreamContract.SERIALIZE,
                        maxlen=self._fps
                    )

                    time.sleep(max(1 / self._fps - (time.time() - start_time), 0))

            except:
                self._element.log(LogLevel.INFO, "Camera loop threw exception: %s" % (sys.exc_info()[1]))
            finally:
                # If camera fails to init or crashes, update status and retry connection
                try:
                    self._status_lock.acquire()
                    self._status_is_running = False
                finally:
                    self._status_lock.release()

                try:
                    self._pipeline.stop()
                except:
                    pass
                time.sleep(self._retry_delay)
Esempio n. 3
0
class Picamera:
    
    def __init__(self, element_name, width, height, fps, retry_delay):
        self._width = width
        self._height = height
        self._fps = fps
        self._retry_delay = retry_delay

        self._status_is_running = False
        self._status_lock = Lock()
        
        # Init element
        self._element = Element(element_name)
        self._element.healthcheck_set(self.is_healthy)
        #self._element.command_add(command_name, command_func_ptr, timeout, serialize)
        
        # Run command loop
        thread = Thread(target=self._element.command_loop, daemon=True)
        thread.start()
    
    def is_healthy(self):
        # Reports whether the camera is connected or not
        try:
           self._status_lock.acquire()
           if self._status_is_running:
               return Response(err_code=0, err_str="Camera is good")
           else:
               return Response(err_code=1, err_str="Camera is not good")
        except:
           return Response(err_code=0, err_str="Could not reach thread")

    def run_camera_stream(self):
        while True:
            try:
                # try to open up camera
                self._element.log(LogLevel.INFO, "Opening PiCamera")
                self._camera = PiCamera()
                self._color_array = PiRGBArray(self._camera)
                
                # set camera configs
                self._camera.resolution = (self._width, self._height)
                self._camera.framerate = self._fps
                
                # allow the camera to warm up
                time.sleep(.5)
                
                try:
                    self._status_lock.acquire()
                    self._status_is_running = True
                finally:
                    self._status_lock.release()
                
                self._element.log(LogLevel.INFO, "Picamera connected and streaming")
                
                while True:
                    start_time = time.time()
                    
                    self._camera.capture(self._color_array, format = 'bgr')
                    color_image = self._color_array.array
                    
                    #do some rotation here
                    
                    _, color_serialized = cv2.imencode(".tif", color_image)
                    
                    color_contract = ColorStreamContract(data=color_serialized.tobytes())
                    self._element.entry_write(
                            ColorStreamContract.STREAM_NAME,
                            color_contract.to_dict(),
                            serialize=ColorStreamContract.SERIALIZE,
                            maxlen=self._fps
                    )
                    time.sleep(max(1 / self._fps - (time.time() - start_time),0))
                    self._color_array.truncate(0)
            except:
                self._element.log(LogLevel.INFO, "Camera threw exception: %s" % (sys.exc_info()[1]))

            finally:
                try:
                    self._status_lock.acquire()
                    self._status_is_running = False
                    self._camera.close()
                finally: 
                    self._status_lock.release()

                time.sleep(self._retry_delay)