Esempio n. 1
0
    if args.data == 'CelebA-HQ':
        from data import CelebA_HQ
        test_dataset = CelebA_HQ(args.data_path, args.attr_path, args.image_list_path, args.img_size, 'test', args.attrs)
os.makedirs(output_path, exist_ok=True)
test_dataloader = data.DataLoader(
    test_dataset, batch_size=1, num_workers=args.num_workers,
    shuffle=False, drop_last=False
)
if args.num_test is None:
    print('Testing images:', len(test_dataset))
else:
    print('Testing images:', min(len(test_dataset), args.num_test))


attgan = AttGAN(args)
attgan.load(find_model(join('output', args.experiment_name, 'checkpoint'), args.load_epoch))
progressbar = Progressbar()

attgan.eval()


for idx, (img_a, att_a) in enumerate(test_dataloader):
    if args.num_test is not None and idx == args.num_test:
        break

    img_a = img_a.cuda() if args.gpu else img_a
    att_a = att_a.cuda() if args.gpu else att_a
    att_a = att_a.type(torch.float)

    att_b_list = [att_a]
    if args.by_levels:
Esempio n. 2
0
test_dataset = CelebA(args.data_path, args.attr_path, args.img_size, 'mytest',
                      args.attrs)
test_dataloader = data.DataLoader(test_dataset,
                                  batch_size=1,
                                  num_workers=args.num_workers,
                                  shuffle=False,
                                  drop_last=False)

print('Testing images:', len(test_dataset))

output_path = join('output', args.experiment_name, 'attention_testing')
os.makedirs(output_path, exist_ok=True)

attgan = AttGAN(args)
attgan.load(r'weights_unzip.17.pth')
attgan.eval()

for idx, (img_real, att_org) in enumerate(test_dataloader):
    img_real = img_real.cuda() if args.gpu else img_real
    att_org = att_org.cuda() if args.gpu else att_org
    att_org = att_org.type(torch.float)
    _, mc, mw, mh = img_real.shape
    att_list = [att_org]
    img_unit = img_real.view(3, mw, mh)
    img_unit = ((img_unit * 0.5) + 0.5) * 255
    img_unit = np.uint8(img_unit)
    img_unit = img_unit[::-1, :, :].transpose(1, 2, 0)
    for i in range(args.n_attrs):
        tmp = att_org.clone()
        tmp[:, i] = 1 - tmp[:, i]
Esempio n. 3
0
from os.path import join
from attgan import AttGAN


def parse(args=None):
    parser = argparse.ArgumentParser()
    parser.add_argument('--experiment_name',
                        dest='experiment_name',
                        type=str,
                        default='06-36AM on March 09, 2021')
    parser.add_argument('--load_epoch', dest='load_epoch', type=int, default=0)
    parser.add_argument('--gpu', dest='gpu', type=bool, default=False)
    return parser.parse_args(args)


args_ = parse()
with open(join('output', args_.experiment_name, 'setting.txt'), 'r') as f:
    args = json.load(f, object_hook=lambda d: argparse.Namespace(**d))

args.gpu = args_.gpu
args.experiment_name = args_.experiment_name
args.load_epoch = args_.load_epoch
args.betas = (args.beta1, args.beta2)

model = AttGAN(args)
model.load(
    os.path.join('output', args.experiment_name, 'checkpoint',
                 'weights.' + str(args.load_epoch) + '.pth'))
model.saveG_D(os.path.join('output', args.experiment_name, 'checkpoint',
                           'weights_unzip.{:d}.pth'.format(args.load_epoch)),
              flag='unzip')
Esempio n. 4
0
                                  batch_size=1,
                                  num_workers=args.num_workers,
                                  shuffle=False,
                                  drop_last=False)

# 如果没有限定处理多少张,那就把整个数据集都做迁移
if args.num_test is None:
    print('Testing images:', len(test_dataset))
else:
    print('Testing images:', min(len(test_dataset), args.num_test))

# 载入AttGAN模型
attgan = AttGAN(args)
# 载入指定节点
attgan.load(
    find_model(join('output', args.experiment_name, 'checkpoint'),
               args.load_epoch)
)  # 载入指定节点 output/128_shortcut1_inject1_none/checkpoint/
progressbar = Progressbar()
# 进行验证
attgan.eval()
# 对图片的大循环
for idx, (img_a, att_a) in enumerate(test_dataloader):
    '''
    idx:            图像的索引
    img_a:          图像
    att_a:          标签
    原始标签        label_a
    1.文件名        '{:06d}.jpg'.format(idx + 182638)       name_array[i]
    2.生成标签      att_c_list[i]                           att_b_list[i]
    3.生成的图片    samples[i]                              samples[i]
    '''