Esempio n. 1
0
def indexed_forward(self, x, shift=None):
    if self.positive:
        positive(self.features)
    self.grid.data = torch.clamp(self.grid.data, -1, 1)
    N, c, w, h = x.size()
    m = self.gauss_pyramid.scale_n + 1
    feat = self.features.view(1, m * c, self.outdims)


    if shift is None:
        grid = self.grid.expand(N, self.outdims, 1, 2)
    else:
        grid = self.grid.expand(N, self.outdims, 1, 2) + shift[:, None, None, :]


    pools = []

    for xx in self.gauss_pyramid(x):
        _, _, img_w, img_h = xx.size()

        img_indexer = torch.tensor([(img_w -1) * img_h, img_h - 1]).type_as(grid)
        (grid + 1) / 2
        img_index = torch.round((grid + 1) / 2 * (img_shape - 1))
        pools.append(F.grid_sample(xx, adj_grid))

    y = torch.cat(pools, dim=1).squeeze(-1)
    y = (y * feat).sum(1).view(N, self.outdims)

    if self.bias is not None:
        y = y + self.bias
    return y
Esempio n. 2
0
def all_forward(self, x, shift=None):
    if self.positive:
        positive(self.features)
    self.grid.data = torch.clamp(self.grid.data, -1, 1)
    N, c, w, h = x.size()
    m = self.gauss_pyramid.scale_n + 1
    feat = self.features.view(m * c, self.outdims, 1, 1).permute([1, 0, 2, 3]).contiguous()
    stacked = torch.cat(self.gauss_pyramid(x), dim=1)
    y = F.conv2d(stacked, feat, self.bias)
    _, _, yw, yh = y.size()

    return y
Esempio n. 3
0
def simple_forward(self, x, shift=None):
    if self.positive:
        positive(self.features)
    N, ch, h, w = x.size()
    feat = self.features.view(1, -1, self.outdims)
    feat = feat[:, 0:ch, :]
    ctr_h, ctr_w = h // 2, w // 2

    y = x[..., ctr_h, ctr_w].unsqueeze(-1).expand(N, ch, self.outdims)

    y = (y * feat).sum(1).view(N, self.outdims)

    if self.bias is not None:
        y = y + self.bias

    return y
Esempio n. 4
0
def fixed_forward(self, x, shift=None):
    if self.positive:
        positive(self.features)
    N, ch, h, w = x.size()
    feat = self.features.view(1, -1, self.outdims)
    feat_scale = feat.mean()
    ctr_h, ctr_w = h // 2, w // 2

    y = x[..., ctr_h, ctr_w].unsqueeze(-1).expand(N, ch, self.outdims)

    y = (y * feat_scale).sum(1).view(N, self.outdims)

    if self.bias is not None:
        y = y + self.bias

    return y
Esempio n. 5
0
def disc_center_forward(self, x, shift=None):
    if self.positive:
        positive(self.features)
    self.grid.data = torch.clamp(self.grid.data, -1, 1)
    N, c, h, w = x.size()
    m = self.gauss_pyramid.scale_n + 1
    feat = self.features.view(1, m * c, self.outdims)

    pools = []
    for xx in self.gauss_pyramid(x):
        N, ch, img_h, img_w = xx.size()
        ctr_h, ctr_w = img_h // 2, img_w // 2
        pools.append(xx[..., ctr_h, ctr_w].unsqueeze(-1).expand(N, ch, self.outdims))

    y = torch.cat(pools, dim=1)
    y = (y * feat).sum(1).view(N, self.outdims)

    if self.bias is not None:
        y = y + self.bias
    return y