Esempio n. 1
0
def test_feature():
    # You have to specify sampling rate with unit == 'samples' and win_dur
    with pytest.raises(ValueError):
        audinterface.Feature(
            feature_names=('o1', 'o2', 'o3'),
            sampling_rate=None,
            unit='samples',
            win_dur=2048,
        )
    # If no win_dur is given, no error should occur
    audinterface.Feature(
        feature_names=('o1', 'o2', 'o3'),
        unit='samples',
        sampling_rate=None,
    )
    # Only hop_dur is given
    with pytest.raises(ValueError):
        audinterface.Feature(
            feature_names=('o1', 'o2', 'o3'),
            hop_dur=0.1,
        )
    audinterface.Feature(
        feature_names=('o1', 'o2', 'o3'),
        win_dur=2048,
        unit='samples',
        sampling_rate=8000,
    )
Esempio n. 2
0
def test_signal_kwargs():
    def process_func(s, sr, arg1, arg2):
        assert arg1 == 'foo'
        assert arg2 == 'bar'

    audinterface.Feature(
        feature_names=('o1', 'o2', 'o3'),
        process_func=process_func,
        arg1='foo',
        arg2='bar',
    )
Esempio n. 3
0
def test_process_signal_from_index(index, expected_features):
    extractor = audinterface.Feature(
        feature_names=('o1', 'o2', 'o3'),
        process_func=feature_extractor,
        channels=range(NUM_CHANNELS),
    )
    features = extractor.process_signal_from_index(
        SIGNAL_2D,
        SAMPLING_RATE,
        index,
    )
    np.testing.assert_array_equal(features.values, expected_features)
Esempio n. 4
0
def test_to_numpy():
    expected_features = np.ones((NUM_CHANNELS, NUM_FEATURES, 1))
    extractor = audinterface.Feature(
        feature_names=('o1', 'o2', 'o3'),
        process_func=feature_extractor,
        channels=range(NUM_CHANNELS),
    )
    features = extractor.process_signal(
        SIGNAL_2D,
        SAMPLING_RATE,
    )
    features = extractor.to_numpy(features)
    np.testing.assert_array_equal(features, expected_features)
Esempio n. 5
0
def test_signal_sliding_window(win_dur, hop_dur, unit):
    # Test sliding window with two time steps
    expected_features = np.ones((NUM_CHANNELS, 2 * NUM_FEATURES))
    extractor = audinterface.Feature(
        feature_names=('o1', 'o2', 'o3'),
        process_func=features_extractor_sliding_window,
        channels=range(NUM_CHANNELS),
        win_dur=win_dur,
        hop_dur=hop_dur,
        sampling_rate=SAMPLING_RATE,
        unit=unit,
        hop_size=SAMPLING_RATE // 2,  # argument to process_func
    )
    features = extractor.process_signal(
        SIGNAL_2D,
        SAMPLING_RATE,
    )
    n_time_steps = len(features)

    if unit == 'samples':
        win_dur = win_dur / SAMPLING_RATE
        if hop_dur is not None:
            hop_dur /= SAMPLING_RATE
        unit = 'seconds'
    if hop_dur is None:
        hop_dur = win_dur / 2

    starts = pd.timedelta_range(
        pd.to_timedelta(0),
        freq=pd.to_timedelta(hop_dur, unit=unit),
        periods=n_time_steps,
    )
    ends = starts + pd.to_timedelta(win_dur, unit=unit)

    index = audinterface.utils.signal_index(starts, ends)
    pd.testing.assert_frame_equal(
        features,
        pd.DataFrame(
            expected_features,
            index=index,
            columns=extractor.column_names,
        ),
    )
Esempio n. 6
0
def test_process_signal(
    process_func,
    num_feat,
    signal,
    start,
    end,
    expand,
    expected,
):
    extractor = audinterface.Feature(
        feature_names=[f'f{i}' for i in range(num_feat)],
        process_func=process_func,
        channels=range(signal.shape[0]),
        process_func_is_mono=expand,
        win_dur=1,
    )
    features = extractor.process_signal(
        signal,
        SAMPLING_RATE,
        start=start,
        end=end,
    )
    np.testing.assert_array_equal(features.values, expected)
Esempio n. 7
0
def test_process_index(tmpdir):

    feature = audinterface.Feature(
        feature_names=('o1', 'o2', 'o3'),
        process_func=feature_extractor,
        channels=range(NUM_CHANNELS),
    )

    # empty

    index = audformat.segmented_index()
    y = feature.process_index(index)
    assert y.empty
    assert y.columns.tolist() == feature.column_names

    # non-empty

    # create file
    root = str(tmpdir.mkdir('wav'))
    file = 'file.wav'
    path = os.path.join(root, file)
    af.write(path, SIGNAL_2D, SAMPLING_RATE)
    y_expected = np.ones((2, NUM_CHANNELS * NUM_FEATURES))

    # absolute paths
    index = audformat.segmented_index([path] * 2, [0, 1], [2, 3])
    y = feature.process_index(index)
    assert y.index.get_level_values('file')[0] == path
    np.testing.assert_array_equal(y.values, y_expected)
    assert y.columns.tolist() == feature.column_names

    # relative paths
    index = audformat.segmented_index([file] * 2, [0, 1], [2, 3])
    y = feature.process_index(index, root=root)
    assert y.index.get_level_values('file')[0] == file
    np.testing.assert_array_equal(y.values, y_expected)
    assert y.columns.tolist() == feature.column_names
Esempio n. 8
0
def test_process_folder(tmpdir):

    index = audinterface.utils.signal_index(0, 1)
    feature = audinterface.Feature(
        feature_names=('o1', 'o2', 'o3'),
        process_func=feature_extractor,
        sampling_rate=None,
        channels=range(NUM_CHANNELS),
        resample=False,
        verbose=False,
    )

    path = str(tmpdir.mkdir('wav'))
    files = [os.path.join(path, f'file{n}.wav') for n in range(3)]
    for file in files:
        af.write(file, SIGNAL_2D, SAMPLING_RATE)

    y = feature.process_folder(path)
    y_expected = np.ones((3, NUM_CHANNELS * NUM_FEATURES))

    assert all(y.index.levels[0] == files)
    assert all(y.index.levels[1] == index.levels[0])
    assert all(y.index.levels[2] == index.levels[1])
    np.testing.assert_array_equal(y.values, y_expected)
Esempio n. 9
0
def test_process_file(tmpdir, start, end, segment):

    start_org = start
    end_org = end

    feature = audinterface.Feature(
        feature_names=('o1', 'o2', 'o3'),
        process_func=feature_extractor,
        sampling_rate=None,
        channels=range(NUM_CHANNELS),
        resample=False,
        segment=segment,
        verbose=False,
    )
    y_expected = np.ones((1, NUM_CHANNELS * NUM_FEATURES))

    # create test file
    root = str(tmpdir.mkdir('wav'))
    file = 'file.wav'
    path = os.path.join(root, file)
    af.write(path, SIGNAL_2D, SAMPLING_RATE)

    # test absolute path
    start = start_org
    end = end_org

    y = feature.process_file(path, start=start, end=end)
    if start is None or pd.isna(start):
        start = pd.to_timedelta(0)
    if end is None or pd.isna(end):
        end = pd.to_timedelta(af.duration(path), unit='s')

    if segment is not None:
        index = segment.process_file(path)
        start = index[0][1]
        end = index[0][2]

    assert y.index.levels[0][0] == path
    assert y.index.levels[1][0] == start
    assert y.index.levels[2][0] == end
    np.testing.assert_array_equal(y, y_expected)

    # test relative path
    start = start_org
    end = end_org

    y = feature.process_file(file, start=start, end=end, root=root)
    if start is None or pd.isna(start):
        start = pd.to_timedelta(0)
    if end is None or pd.isna(end):
        end = pd.to_timedelta(af.duration(path), unit='s')

    if segment is not None:
        index = segment.process_file(file, root=root)
        start = index[0][1]
        end = index[0][2]

    assert y.index.levels[0][0] == file
    assert y.index.levels[1][0] == start
    assert y.index.levels[2][0] == end
    np.testing.assert_array_equal(y, y_expected)
Esempio n. 10
0
            feature_names=('o1', 'o2', 'o3'),
            hop_dur=0.1,
        )
    audinterface.Feature(
        feature_names=('o1', 'o2', 'o3'),
        win_dur=2048,
        unit='samples',
        sampling_rate=8000,
    )


@pytest.mark.parametrize('signal, feature, expected', [
    (
        SIGNAL_1D,
        audinterface.Feature(
            feature_names=['f1', 'f2', 'f3'],
            process_func=lambda x, sr: np.ones((1, 3)),
        ),
        np.ones((1, 3)),
    ),
    (
        SIGNAL_1D,
        audinterface.Feature(
            feature_names=['f1', 'f2', 'f3'],
            process_func=lambda x, sr: np.ones((1, 3, 5)),
        ),
        np.ones((1, 3, 5)),
    ),
    (
        SIGNAL_2D,
        audinterface.Feature(
            feature_names=['f1', 'f2', 'f3'],