Esempio n. 1
0
def compose_from_transcript(files, search, searchtype):
    """Takes transcripts created by audiogrep/pocketsphinx, a search and search type
    and returns a list of timestamps for creating a supercut"""

    final_segments = []

    if searchtype in ['re', 'word', 'franken', 'fragment']:
        if searchtype == 're':
            searchtype = 'sentence'

        segments = audiogrep.search(search, files, mode=searchtype, regex=True)
        for seg in segments:
            seg['file'] = seg['file'].replace('.transcription.txt', '')
            seg['line'] = seg['words']
            final_segments.append(seg)

    elif searchtype in ['hyper', 'pos']:
        for s in audiogrep.convert_timestamps(files):
            for w in s['words']:
                if search_line(w[0], search, searchtype):
                    seg = {
                        'file': s['file'].replace('.transcription.txt',''),
                        'line': w[0],
                        'start': float(w[1]),
                        'end': float(w[2])
                    }
                    final_segments.append(seg)

    return final_segments
Esempio n. 2
0
def compose_from_transcript(files, search, searchtype):
    """Takes transcripts created by audiogrep/pocketsphinx, a search and search type
    and returns a list of timestamps for creating a supercut"""

    final_segments = []

    if searchtype in ['re', 'word', 'franken', 'fragment']:
        if searchtype == 're':
            searchtype = 'sentence'

        segments = audiogrep.search(search, files, mode=searchtype, regex=True)
        for seg in segments:
            seg['file'] = seg['file'].replace('.transcription.txt', '')
            seg['line'] = seg['words']
            final_segments.append(seg)

    elif searchtype in ['hyper', 'pos']:
        for s in audiogrep.convert_timestamps(files):
            for w in s['words']:
                if search_line(w[0], search, searchtype):
                    seg = {
                        'file': s['file'].replace('.transcription.txt', ''),
                        'line': w[0],
                        'start': float(w[1]),
                        'end': float(w[2])
                    }
                    final_segments.append(seg)

    return final_segments
Esempio n. 3
0
def get_ngrams(inputfile, n=1, use_transcript=False, use_vtt=False):
    '''
    Get ngrams from a text
    Sourced from:
    https://gist.github.com/dannguyen/93c2c43f4e65328b85af
    '''

    words = []
    if use_transcript:
        for s in audiogrep.convert_timestamps(inputfile):
            for w in s['words']:
                words.append(w[0])
    elif use_vtt:
        vtts = get_vtt_files(inputfile)
        for vtt in vtts:
            with open(vtt['vtt'], 'r') as infile:
                sentences = parse_auto_sub(infile.read())
            for s in sentences:
                for w in s['words']:
                    words.append(w['word'])
    else:
        text = ''
        srts = get_subtitle_files(inputfile)
        for srt in srts:
            lines = clean_srt(srt)
            if lines:
                for timespan in lines.keys():
                    line = lines[timespan].strip()
                    text += line + ' '

        words = re.split(r'[.?!,:\"]+\s*|\s+', text)

    ngrams = zip(*[words[i:] for i in range(n)])
    return ngrams
Esempio n. 4
0
def extract_words(files,
                  padding,
                  use_uuid=False,
                  confidence=0.0,
                  output_directory='extracted_words'):
    ''' Extracts individual words form files and exports them to individual files. '''
    segments = []
    for s in audiogrep.convert_timestamps(files):
        for w in s['words']:
            if w[3] < confidence:
                continue
            try:
                float(w[1])
            except:
                continue
            seg = {
                'word': w[0],
                'file': s['file'].replace('.transcription.txt', ''),
                'line': w[0],
                'start': float(w[1]),
                'end': float(w[2])
            }
            segments.append(seg)
    composition = segments
    # apply padding and sync
    for c in composition:
        c['start'] = c['start'] - padding
        c['end'] = c['end'] + padding
    all_filenames = set([c['file'] for c in composition])
    videofileclips = dict([(f, VideoFileClip(f)) for f in all_filenames])
    cut_clips = []
    for c in composition:
        try:
            clip = videofileclips[c['file']]
            start = max(0, c['start'] - padding)
            end = min(c['end'] + padding, clip.duration)
            subclip = clip.subclip(start, end)
            cut_clips.append((c['word'], subclip))
        except Exception as e:
            continue
    from collections import defaultdict
    wc = defaultdict(int)
    for word, clip in cut_clips:
        print word, clip
        if use_uuid:
            word_id = str(uuid.uuid1())
        else:
            wc[word] += 1
            word_id = str(wc[word])
        path = output_directory + "/" + word
        if not os.path.exists(path):
            os.makedirs(path)
        clip.to_videofile(path + "/" + word_id + ".mp4",
                          codec="libx264",
                          temp_audiofile='temp-audio.m4a',
                          audio_codec='aac',
                          remove_temp=True,
                          fps=23)
def test_convert_timestamps():
    filename = os.path.join(os.path.dirname(__file__), 'data/test.mp3')
    sentences = audiogrep.convert_timestamps([filename])
    words = {}
    for sentence in sentences:
        for word in sentence['words']:
            words[word[0]] = True
    assert 'fashion' in words
    assert len(sentences) == 9
import sys
import moviepy.editor as mp
import audiogrep


videofile = sys.argv[1]

# get the sentence timestamps
sentences = audiogrep.convert_timestamps([videofile])

timestamps = []
for sentence in sentences:
    timestamps += sentence['words']

# alphabetize the list
timestamps.sort(key=lambda x: x[0])

# we could limit how many clips here
# words = words[100:200]

original_video = mp.VideoFileClip(videofile)

clips = []

for timestamp in timestamps:
    word = timestamp[0]
    start = float(timestamp[1])
    end = float(timestamp[2])

    # skip this clip if the word is shorter than 5 characters