def example_single_augmenters(): print("Example: Single Augmenters") #from imgaug import augmenters as iaa import augmenters as iaa images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8) flipper = iaa.Fliplr(1.0) # always horizontally flip each input image images[0] = flipper.augment_image(images[0]) # horizontally flip image 0 vflipper = iaa.Flipud( 0.9) # vertically flip each input image with 90% probability images[1] = vflipper.augment_image( images[1]) # probably vertically flip image 1 blurer = iaa.GaussianBlur(3.0) images[2] = blurer.augment_image( images[2]) # blur image 2 by a sigma of 3.0 images[3] = blurer.augment_image( images[3]) # blur image 3 by a sigma of 3.0 too translater = iaa.Affine( translate_px={"x": -16}) # move each input image by 16px to the left images[4] = translater.augment_image(images[4]) # move image 4 to the left scaler = iaa.Affine( scale={"y": (0.8, 1.2)}) # scale each input image to 80-120% on the y axis images[5] = scaler.augment_image( images[5]) # scale image 5 by 80-120% on the y axis
def draw_single_sequential_images(): image = misc.imresize(ndimage.imread("quokka.jpg")[0:643, 0:643], (128, 128)) st = lambda aug: iaa.Sometimes(0.5, aug) seq = iaa.Sequential([ iaa.Fliplr(0.5), iaa.Flipud(0.5), st(iaa.Crop(percent=(0, 0.1))), st(iaa.GaussianBlur((0, 3.0))), st(iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.2), per_channel=0.5)), st(iaa.Dropout((0.0, 0.1), per_channel=0.5)), st(iaa.Add((-10, 10), per_channel=0.5)), st(iaa.Multiply((0.5, 1.5), per_channel=0.5)), st(iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5)), st(iaa.Affine( scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, translate_px={"x": (-16, 16), "y": (-16, 16)}, rotate=(-45, 45), shear=(-16, 16), order=ia.ALL, cval=(0, 1.0), mode=ia.ALL )), st(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)) ], random_order=True ) grid = seq.draw_grid(image, cols=8, rows=8) misc.imsave("examples_grid.jpg", grid)
def example_determinism(): print("Example: Determinism") #from imgaug import augmenters as iaa import augmenters as iaa # Standard scenario: You have N RGB-images and additionally 21 heatmaps per image. # You want to augment each image and its heatmaps identically. images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8) heatmaps = np.random.randint(0, 255, (16, 128, 128, 21), dtype=np.uint8) seq = iaa.Sequential([ iaa.GaussianBlur((0, 3.0)), iaa.Affine(translate_px={"x": (-40, 40)}) ]) # Convert the stochastic sequence of augmenters to a deterministic one. # The deterministic sequence will always apply the exactly same effects to the images. seq_det = seq.to_deterministic( ) # call this for each batch again, NOT only once at the start images_aug = seq_det.augment_images(images) heatmaps_aug = seq_det.augment_images(heatmaps) # ----- # Make sure that the example really does something import imgaug as ia assert not np.array_equal(images, images_aug) assert not np.array_equal(heatmaps, heatmaps_aug) images_show = [] for img_idx in range(len(images)): images_show.extend([ images[img_idx], images_aug[img_idx], heatmaps[img_idx][..., 0:3], heatmaps_aug[img_idx][..., 0:3] ]) ia.show_grid(images_show, cols=4)
def main(): images = [ misc.imresize( ndimage.imread("../quokka.jpg")[0:643, 0:643], (128, 128)), misc.imresize(data.astronaut(), (128, 128)) ] augmenters = [ iaa.Noop(name="Noop"), iaa.Crop(px=(0, 8), name="Crop-px"), iaa.Crop(percent=(0, 0.1), name="Crop-percent"), iaa.Fliplr(0.5, name="Fliplr"), iaa.Flipud(0.5, name="Flipud"), iaa.Grayscale(0.5, name="Grayscale0.5"), iaa.Grayscale(1.0, name="Grayscale1.0"), iaa.GaussianBlur((0, 3.0), name="GaussianBlur"), iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.1), name="AdditiveGaussianNoise"), iaa.Dropout((0.0, 0.1), name="Dropout"), iaa.Multiply((0.5, 1.5), name="Multiply"), iaa.ContrastNormalization(alpha=(0.5, 2.0)), iaa.Affine(scale={ "x": (0.8, 1.2), "y": (0.8, 1.2) }, translate_px={ "x": (-16, 16), "y": (-16, 16) }, rotate=(-45, 45), shear=(-16, 16), order=ia.ALL, cval=(0, 1.0), mode=ia.ALL, name="Affine"), iaa.ElasticTransformation(alpha=(0.5, 8.0), sigma=1.0) ] #for i, aug in enumerate(augmenters): #print(i) #aug.deepcopy() #import copy #copy.deepcopy(aug) seq = iaa.Sequential([aug.copy() for aug in augmenters], name="Sequential") st = iaa.Sometimes(0.5, seq.copy(), name="Sometimes") augmenters.append(seq) augmenters.append(st) for augmenter in augmenters: print("Augmenter: %s" % (augmenter.name, )) grid = augmenter.draw_grid(images, rows=1, cols=16) misc.imshow(grid)
def example_keypoints(): print("Example: Keypoints") import imgaug as ia #from imgaug import augmenters as iaa import augmenters as iaa from scipy import misc import random images = np.random.randint(0, 50, (4, 128, 128, 3), dtype=np.uint8) # Generate random keypoints. # The augmenters expect a list of imgaug.KeypointsOnImage. keypoints_on_images = [] for image in images: height, width = image.shape[0:2] keypoints = [] for _ in range(4): x = random.randint(0, width - 1) y = random.randint(0, height - 1) keypoints.append(ia.Keypoint(x=x, y=y)) keypoints_on_images.append( ia.KeypointsOnImage(keypoints, shape=image.shape)) seq = iaa.Sequential( [iaa.GaussianBlur((0, 3.0)), iaa.Affine(scale=(0.5, 0.7))]) seq_det = seq.to_deterministic( ) # call this for each batch again, NOT only once at the start # augment keypoints and images images_aug = seq_det.augment_images(images) keypoints_aug = seq_det.augment_keypoints(keypoints_on_images) # Example code to show each image and print the new keypoints coordinates for img_idx, (image_before, image_after, keypoints_before, keypoints_after) in enumerate( zip(images, images_aug, keypoints_on_images, keypoints_aug)): image_before = keypoints_before.draw_on_image(image_before) image_after = keypoints_after.draw_on_image(image_after) misc.imshow(np.concatenate((image_before, image_after), axis=1)) # before and after for kp_idx, keypoint in enumerate(keypoints_after.keypoints): keypoint_old = keypoints_on_images[img_idx].keypoints[kp_idx] x_old, y_old = keypoint_old.x, keypoint_old.y x_new, y_new = keypoint.x, keypoint.y print( "[Keypoints for image #%d] before aug: x=%d y=%d | after aug: x=%d y=%d" % (img_idx, x_old, y_old, x_new, y_new))
def example_hooks(): print("Example: Hooks") import imgaug as ia #from imgaug import augmenters as iaa import augmenters as iaa import numpy as np # images and heatmaps, just arrays filled with value 30 images = np.ones((16, 128, 128, 3), dtype=np.uint8) * 30 heatmaps = np.ones((16, 128, 128, 21), dtype=np.uint8) * 30 # add vertical lines to see the effect of flip images[:, 16:128 - 16, 120:124, :] = 120 heatmaps[:, 16:128 - 16, 120:124, :] = 120 seq = iaa.Sequential([ iaa.Fliplr(0.5, name="Flipper"), iaa.GaussianBlur((0, 3.0), name="GaussianBlur"), iaa.Dropout(0.02, name="Dropout"), iaa.AdditiveGaussianNoise(scale=0.01 * 255, name="MyLittleNoise"), iaa.AdditiveGaussianNoise(loc=32, scale=0.0001 * 255, name="SomeOtherNoise"), iaa.Affine(translate_px={"x": (-40, 40)}, name="Affine") ]) # change the activated augmenters for heatmaps def activator_heatmaps(images, augmenter, parents, default): if augmenter.name in ["GaussianBlur", "Dropout", "MyLittleNoise"]: return False else: # default value for all other augmenters return default hooks_heatmaps = ia.HooksImages(activator=activator_heatmaps) seq_det = seq.to_deterministic( ) # call this for each batch again, NOT only once at the start images_aug = seq_det.augment_images(images) heatmaps_aug = seq_det.augment_images(heatmaps, hooks=hooks_heatmaps) # ----------- ia.show_grid(images_aug) ia.show_grid(heatmaps_aug[..., 0:3])
def draw_per_augmenter_images(): print("[draw_per_augmenter_images] Loading image...") image = misc.imresize(ndimage.imread("quokka.jpg")[0:643, 0:643], (128, 128)) #image = misc.imresize(data.chelsea()[0:300, 50:350, :], (128, 128)) #image = misc.imresize(data.astronaut(), (128, 128)) #keypoints = [ia.Keypoint(x=43, y=43), ia.Keypoint(x=78, y=40), ia.Keypoint(x=64, y=73)] # left eye, right eye, mouth keypoints = [ia.Keypoint(x=34, y=15), ia.Keypoint(x=85, y=13), ia.Keypoint(x=63, y=73)] # left ear, right ear, mouth keypoints = [ia.KeypointsOnImage(keypoints, shape=image.shape)] print("[draw_per_augmenter_images] Initializing...") rows_augmenters = [ ("Noop", [("", iaa.Noop()) for _ in range(5)]), #("Crop", [iaa.Crop(px=vals) for vals in [(2, 4), (4, 8), (6, 16), (8, 32), (10, 64)]]), ("Crop\n(top, right,\nbottom, left)", [(str(vals), iaa.Crop(px=vals)) for vals in [(2, 0, 0, 0), (0, 8, 8, 0), (4, 0, 16, 4), (8, 0, 0, 32), (32, 64, 0, 0)]]), ("Fliplr", [(str(p), iaa.Fliplr(p)) for p in [0, 0, 1, 1, 1]]), ("Flipud", [(str(p), iaa.Flipud(p)) for p in [0, 0, 1, 1, 1]]), ("Add", [("value=%d" % (val,), iaa.Add(val)) for val in [-45, -25, 0, 25, 45]]), ("Add\n(per channel)", [("value=(%d, %d)" % (vals[0], vals[1],), iaa.Add(vals, per_channel=True)) for vals in [(-55, -35), (-35, -15), (-10, 10), (15, 35), (35, 55)]]), ("Multiply", [("value=%.2f" % (val,), iaa.Multiply(val)) for val in [0.25, 0.5, 1.0, 1.25, 1.5]]), ("Multiply\n(per channel)", [("value=(%.2f, %.2f)" % (vals[0], vals[1],), iaa.Multiply(vals, per_channel=True)) for vals in [(0.15, 0.35), (0.4, 0.6), (0.9, 1.1), (1.15, 1.35), (1.4, 1.6)]]), ("GaussianBlur", [("sigma=%.2f" % (sigma,), iaa.GaussianBlur(sigma=sigma)) for sigma in [0.25, 0.50, 1.0, 2.0, 4.0]]), ("AdditiveGaussianNoise", [("scale=%.2f" % (scale,), iaa.AdditiveGaussianNoise(scale=scale * 255)) for scale in [0.025, 0.05, 0.1, 0.2, 0.3]]), ("AdditiveGaussianNoise\n(per channel)", [("scale=%.2f" % (scale,), iaa.AdditiveGaussianNoise(scale=scale * 255, per_channel=True)) for scale in [0.025, 0.05, 0.1, 0.2, 0.3]]), ("Dropout", [("p=%.2f" % (p,), iaa.Dropout(p=p)) for p in [0.025, 0.05, 0.1, 0.2, 0.4]]), ("Dropout\n(per channel)", [("p=%.2f" % (p,), iaa.Dropout(p=p, per_channel=True)) for p in [0.025, 0.05, 0.1, 0.2, 0.4]]), ("ContrastNormalization", [("alpha=%.1f" % (alpha,), iaa.ContrastNormalization(alpha=alpha)) for alpha in [0.5, 0.75, 1.0, 1.25, 1.50]]), ("ContrastNormalization\n(per channel)", [("alpha=(%.2f, %.2f)" % (alphas[0], alphas[1],), iaa.ContrastNormalization(alpha=alphas, per_channel=True)) for alphas in [(0.4, 0.6), (0.65, 0.85), (0.9, 1.1), (1.15, 1.35), (1.4, 1.6)]]), ("Affine: Scale", [("%.1fx" % (scale,), iaa.Affine(scale=scale)) for scale in [0.1, 0.5, 1.0, 1.5, 1.9]]), ("Affine: Translate", [("x=%d y=%d" % (x, y), iaa.Affine(translate_px={"x": x, "y": y})) for x, y in [(-32, -16), (-16, -32), (-16, -8), (16, 8), (16, 32)]]), ("Affine: Rotate", [("%d deg" % (rotate,), iaa.Affine(rotate=rotate)) for rotate in [-90, -45, 0, 45, 90]]), ("Affine: Shear", [("%d deg" % (shear,), iaa.Affine(shear=shear)) for shear in [-45, -25, 0, 25, 45]]), ("Affine: Modes", [(mode, iaa.Affine(translate_px=-32, mode=mode)) for mode in ["constant", "edge", "symmetric", "reflect", "wrap"]]), ("Affine: cval", [("%.2f" % (cval,), iaa.Affine(translate_px=-32, cval=cval, mode="constant")) for cval in [0.0, 0.25, 0.5, 0.75, 1.0]]), ( "Affine: all", [ ( "", iaa.Affine( scale={"x": (0.5, 1.5), "y": (0.5, 1.5)}, translate_px={"x": (-32, 32), "y": (-32, 32)}, rotate=(-45, 45), shear=(-32, 32), mode=ia.ALL, cval=(0.0, 1.0) ) ) for _ in range(5) ] ), ("ElasticTransformation\n(sigma=0.2)", [("alpha=%.1f" % (alpha,), iaa.ElasticTransformation(alpha=alpha, sigma=0.2)) for alpha in [0.1, 0.5, 1.0, 3.0, 9.0]]) ] print("[draw_per_augmenter_images] Augmenting...") rows = [] for (row_name, augmenters) in rows_augmenters: row_images = [] row_keypoints = [] row_titles = [] for img_title, augmenter in augmenters: aug_det = augmenter.to_deterministic() row_images.append(aug_det.augment_image(image)) row_keypoints.append(aug_det.augment_keypoints(keypoints)[0]) row_titles.append(img_title) rows.append((row_name, row_images, row_keypoints, row_titles)) print("[draw_per_augmenter_images] Plotting...") width = 8 height = int(1.5 * len(rows_augmenters)) fig = plt.figure(figsize=(width, height)) grid_rows = len(rows) grid_cols = 1 + 5 gs = gridspec.GridSpec(grid_rows, grid_cols, width_ratios=[2, 1, 1, 1, 1, 1]) axes = [] for i in range(grid_rows): axes.append([plt.subplot(gs[i, col_idx]) for col_idx in range(grid_cols)]) fig.tight_layout() #fig.subplots_adjust(bottom=0.2 / grid_rows, hspace=0.22) #fig.subplots_adjust(wspace=0.005, hspace=0.425, bottom=0.02) fig.subplots_adjust(wspace=0.005, hspace=0.005, bottom=0.02) for row_idx, (row_name, row_images, row_keypoints, row_titles) in enumerate(rows): axes_row = axes[row_idx] for col_idx in range(grid_cols): ax = axes_row[col_idx] ax.cla() ax.axis("off") ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) if col_idx == 0: ax.text(0, 0.5, row_name, color="black") else: cell_image = row_images[col_idx-1] cell_keypoints = row_keypoints[col_idx-1] cell_image_kp = cell_keypoints.draw_on_image(cell_image, size=5) ax.imshow(cell_image_kp) x = 0 y = 145 #ax.text(x, y, row_titles[col_idx-1], color="black", backgroundcolor="white", fontsize=6) ax.text(x, y, row_titles[col_idx-1], color="black", fontsize=7) fig.savefig("examples.jpg", bbox_inches="tight")
def augment_data(): aug_data = np.zeros((4000, 227, 227, 3)) st = lambda aug: iaa.Sometimes(0.5, aug) seq = iaa.Sequential( [ iaa.Fliplr(0.5), # horizontally flip 50% of all images iaa.Flipud(0.5), # vertically flip 50% of all images st(iaa.Crop( percent=(0, 0.1))), # crop images by 0-10% of their height/width st(iaa.GaussianBlur( (0, 3.0))), # blur images with a sigma between 0 and 3.0 st( iaa.AdditiveGaussianNoise( loc=0, scale=(0.0, 0.2), per_channel=0.5)), # add gaussian noise to images st(iaa.Dropout( (0.0, 0.1), per_channel=0.5)), # randomly remove up to 10% of the pixels st(iaa.Add( (-10, 10), per_channel=0.5 )), # change brightness of images (by -10 to 10 of original value) st(iaa.Multiply((0.5, 1.5), per_channel=0.5) ), # change brightness of images (50-150% of original value) st(iaa.ContrastNormalization( (0.5, 2.0), per_channel=0.5)), # improve or worsen the contrast st( iaa.Affine( scale={ "x": (0.8, 1.2), "y": (0.8, 1.2) }, # scale images to 80-120% of their size, individually per axis translate_px={ "x": (-16, 16), "y": (-16, 16) }, # translate by -16 to +16 pixels (per axis) rotate=(-45, 45), # rotate by -45 to +45 degrees shear=(-16, 16), # shear by -16 to +16 degrees #order=ia.ALL, # use any of scikit-image's interpolation methods cval=( 0, 1.0 ), # if mode is constant, use a cval between 0 and 1.0 #mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples) )), st(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25) ) # apply elastic transformations with random strengths ], random_order=True # do all of the above in random order ) for i in range(4000): img = plt.imread(trainfileName(i + 1)) image_aug = seq.augment_image(img) #gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #gray = rgb2gray(img) aug_data[i, ...] = image_aug.astype(float) / 255 np.save("aug_data_1.npy", aug_data) #augment_data()
def example_heavy_augmentations(): print("Example: Heavy Augmentations") import imgaug as ia #from imgaug import augmenters as iaa import augmenters as iaa # random example images images = np.random.randint(0, 255, (16, 128, 128, 3), dtype=np.uint8) # Sometimes(0.5, ...) applies the given augmenter in 50% of all cases, # e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second image. st = lambda aug: iaa.Sometimes(0.5, aug) # Define our sequence of augmentation steps that will be applied to every image # All augmenters with per_channel=0.5 will sample one value _per image_ # in 50% of all cases. In all other cases they will sample new values # _per channel_. seq = iaa.Sequential( [ iaa.Fliplr(0.5), # horizontally flip 50% of all images iaa.Flipud(0.5), # vertically flip 50% of all images st(iaa.Crop( percent=(0, 0.1))), # crop images by 0-10% of their height/width st(iaa.GaussianBlur( (0, 3.0))), # blur images with a sigma between 0 and 3.0 st( iaa.AdditiveGaussianNoise( loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5)), # add gaussian noise to images st(iaa.Dropout( (0.0, 0.1), per_channel=0.5)), # randomly remove up to 10% of the pixels st(iaa.Add( (-10, 10), per_channel=0.5 )), # change brightness of images (by -10 to 10 of original value) st(iaa.Multiply((0.5, 1.5), per_channel=0.5) ), # change brightness of images (50-150% of original value) st(iaa.ContrastNormalization( (0.5, 2.0), per_channel=0.5)), # improve or worsen the contrast st(iaa.Grayscale((0.0, 1.0))), # blend with grayscale image st( iaa.Affine( scale={ "x": (0.8, 1.2), "y": (0.8, 1.2) }, # scale images to 80-120% of their size, individually per axis translate_px={ "x": (-16, 16), "y": (-16, 16) }, # translate by -16 to +16 pixels (per axis) rotate=(-45, 45), # rotate by -45 to +45 degrees shear=(-16, 16), # shear by -16 to +16 degrees order=[ 0, 1 ], # use scikit-image's interpolation orders 0 (nearest neighbour) and 1 (bilinear) cval=( 0, 1.0 ), # if mode is constant, use a cval between 0 and 1.0 mode=ia. ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples) )), st(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25) ) # apply elastic transformations with random strengths ], random_order=True # do all of the above in random order ) images_aug = seq.augment_images(images) # ----- # Make sure that the example really does something assert not np.array_equal(images, images_aug)
def main(): augmenters = [ iaa.Noop(name="Noop"), iaa.Crop(px=(0, 8), name="Crop-px"), iaa.Crop(percent=(0, 0.1), name="Crop-percent"), iaa.Fliplr(0.5, name="Fliplr"), iaa.Flipud(0.5, name="Flipud"), iaa.Grayscale((0.0, 1.0), name="Grayscale"), iaa.GaussianBlur((0, 3.0), name="GaussianBlur"), iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.1), name="AdditiveGaussianNoise"), iaa.Dropout((0.0, 0.1), name="Dropout"), iaa.Multiply((0.5, 1.5), name="Multiply"), iaa.ContrastNormalization(alpha=(0.5, 2.0), name="ContrastNormalization"), iaa.Grayscale(alpha=(0.0, 1.0), name="Grayscale"), iaa.ElasticTransformation(alpha=(0.5, 8.0), sigma=1.0, name="ElasticTransformation"), iaa.Affine(scale={ "x": (0.8, 1.2), "y": (0.8, 1.2) }, translate_px={ "x": (-16, 16), "y": (-16, 16) }, rotate=(-45, 45), shear=(-16, 16), order=0, cval=(0, 1.0), mode="constant", name="AffineOrder0ModeConstant") ] for order in [0, 1]: augmenters.append( iaa.Affine(scale={ "x": (0.8, 1.2), "y": (0.8, 1.2) }, translate_px={ "x": (-16, 16), "y": (-16, 16) }, rotate=(-45, 45), shear=(-16, 16), order=order, cval=(0, 1.0), mode=ia.ALL, name="AffineOrder%d" % (order, ))) augmenters.append( iaa.Affine(scale={ "x": (0.8, 1.2), "y": (0.8, 1.2) }, translate_px={ "x": (-16, 16), "y": (-16, 16) }, rotate=(-45, 45), shear=(-16, 16), order=ia.ALL, cval=(0, 1.0), mode=ia.ALL, name="AffineAll")) kps = [] for _ in range(20): x = random.randint(0, 31) y = random.randint(0, 31) kps.append(ia.Keypoint(x=x, y=y)) kps = ia.KeypointsOnImage(kps, shape=(32, 32, 3)) #small_keypoints_one = ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=3, y=3)], shape=(4, 4, 3)) #medium_keypoints_one = ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=16, y=16), ia.Keypoint(x=31, y=31)], shape=(32, 32, 3)) #large_keypoints_one = ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=128, y=128), ia.Keypoint(x=255, y=255)], shape=(256, 256, 3)) small_keypoints_one = kps.on((4, 4, 3)) medium_keypoints_one = kps.on((32, 32, 3)) large_keypoints_one = kps.on((256, 256, 3)) small_keypoints = [small_keypoints_one.deepcopy() for _ in range(16)] medium_keypoints = [medium_keypoints_one.deepcopy() for _ in range(16)] large_keypoints = [large_keypoints_one.deepcopy() for _ in range(16)] small_images = np.random.randint(0, 255, (16, 4, 4, 3)).astype(np.uint8) medium_images = np.random.randint(0, 255, (16, 32, 32, 3)).astype(np.uint8) large_images = np.random.randint(0, 255, (16, 256, 256, 3)).astype(np.uint8) print("---------------------------") print("Keypoints") print("---------------------------") for augmenter in augmenters: print("[Augmenter: %s]" % (augmenter.name, )) for keypoints in [small_keypoints, medium_keypoints, large_keypoints]: times = [] for i in range(100): time_start = time.time() img_aug = augmenter.augment_keypoints(keypoints) time_end = time.time() times.append(time_end - time_start) times = np.array(times) img_str = "{:20s}".format(keypoints[0].shape) print("%s | SUM %.5fs | PER ITER avg %.5fs, min %.5fs, max %.5fs" % (img_str, np.sum(times), np.average(times), np.min(times), np.max(times))) print("---------------------------") print("Images") print("---------------------------") for augmenter in augmenters: print("[Augmenter: %s]" % (augmenter.name, )) for images in [small_images, medium_images, large_images]: times = [] for i in range(100): time_start = time.time() img_aug = augmenter.augment_images(images) time_end = time.time() times.append(time_end - time_start) times = np.array(times) img_str = "{:20s}".format(images.shape) print("%s | SUM %.5fs | PER ITER avg %.5fs, min %.5fs, max %.5fs" % (img_str, np.sum(times), np.average(times), np.min(times), np.max(times)))