Esempio n. 1
0
def evaluate():
  with tf.Graph().as_default():
    # Get images and labels for aurora.
    images, labels = dnn.inputs(True)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = dnn.inference(images)

    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)

    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        dnn.MOVING_AVERAGE_DECAY)
    # variables_to_restore = variable_averages.variables_to_restore()
    # saver = tf.train.Saver(variables_to_restore)
    saver = tf.train.Saver()

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.merge_all_summaries()

    graph_def = tf.get_default_graph().as_graph_def()
    summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir,
                                            graph_def=graph_def)

    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs)
Esempio n. 2
0
def train():
    """Train aurora images for a number of steps."""
    with tf.Graph().as_default():
        global_step = tf.Variable(0, trainable=False)

        # Get images and labels for aurora.
        images, labels = dnn1.distorted_inputs()

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = dnn1.inference(images)

        # Calculate loss.
        loss = dnn1.loss(logits, labels)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = dnn1.train(loss, global_step)

        # Create a saver.
        saver = tf.train.Saver(tf.all_variables())

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.merge_all_summaries()

        # Build an initialization operation to run below.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        # aggregation_method = 2
        ### start session
        config = tf.ConfigProto()
        # config.gpu_options.per_process_gpu_memory_fraction=0.98
        config.gpu_options.allocator_type = "BFC"
        config.log_device_placement = FLAGS.log_device_placement
        # sess = tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement))
        sess = tf.Session(config=config)
        sess.run(init)

        # Start the queue runners.
        tf.train.start_queue_runners(sess=sess)

        summary_writer = tf.train.SummaryWriter(FLAGS.train_dir,
                                                graph_def=sess.graph_def)

        for step in xrange(FLAGS.max_steps):
            start_time = time.time()
            _, loss_value = sess.run([train_op, loss])
            duration = time.time() - start_time

            assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

            if step % 10 == 0:
                num_examples_per_step = FLAGS.batch_size
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = float(duration)

                format_str = (
                    '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                    'sec/batch)')
                print(format_str % (datetime.now(), step, loss_value,
                                    examples_per_sec, sec_per_batch))

            if step % 100 == 0:
                summary_str = sess.run(summary_op)
                summary_writer.add_summary(summary_str, step)

            # Save the model checkpoint periodically.
            if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
                checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
Esempio n. 3
0
def train():
  """Train aurora images for a number of steps."""
  with tf.Graph().as_default():
    global_step = tf.Variable(0, trainable=False)

    # Get images and labels for aurora.
    images, labels = dnn1.distorted_inputs()

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = dnn1.inference(images)

    # Calculate loss.
    loss = dnn1.loss(logits, labels)

    # Build a Graph that trains the model with one batch of examples and
    # updates the model parameters.
    train_op = dnn1.train(loss, global_step)

    # Create a saver.
    saver = tf.train.Saver(tf.all_variables())

    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.merge_all_summaries()

    # Build an initialization operation to run below.
    init = tf.initialize_all_variables()

    # Start running operations on the Graph.
    # aggregation_method = 2
    ### start session
    config = tf.ConfigProto()
    # config.gpu_options.per_process_gpu_memory_fraction=0.98
    config.gpu_options.allocator_type = "BFC"
    config.log_device_placement = FLAGS.log_device_placement
    # sess = tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement))
    sess = tf.Session(config=config)
    sess.run(init)

    # Start the queue runners.
    tf.train.start_queue_runners(sess=sess)

    summary_writer = tf.train.SummaryWriter(FLAGS.train_dir,
                                            graph_def=sess.graph_def)

    for step in xrange(FLAGS.max_steps):
      start_time = time.time()
      _, loss_value = sess.run([train_op, loss])
      duration = time.time() - start_time

      assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

      if step % 10 == 0:
        num_examples_per_step = FLAGS.batch_size
        examples_per_sec = num_examples_per_step / duration
        sec_per_batch = float(duration)

        format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                      'sec/batch)')
        print (format_str % (datetime.now(), step, loss_value,
                             examples_per_sec, sec_per_batch))

      if step % 100 == 0:
        summary_str = sess.run(summary_op)
        summary_writer.add_summary(summary_str, step)

      # Save the model checkpoint periodically.
      if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
        checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
        saver.save(sess, checkpoint_path, global_step=step)