def make_short_standard_simulation(name, identity, data_id, learner, path): simulation = autem.Simulation( name, [ loaders.OpenMLLoader(data_id), scorers.LeagueScorer(scorers.accuracy_score, [ [ 1, 4, 5 ] ]), workflows.StandardWorkflow(), baselines.BaselineStats(identity['dataset']), learner_builders[learner](), reporters.Csv(path), ]) settings = autem.SimulationSettings(simulation) settings.set_max_species(3) return simulation
def run_balance_scale_mastery(seed): baseline_name = "balance-scale" experiment = "mastery_%s_s%d" % (baseline_name, seed) study = "DEV" version = benchmark.get_version() simulation_name = "%s_%s_v%d" % (study, experiment, version) configuration = baselines.get_baseline_configuration(baseline_name) path = benchmark.get_simulations_path().joinpath(study).joinpath( experiment) utility.prepare_OpenML() task_id = configuration["task_id"] task = openml.tasks.get_task(task_id) data_id = task.dataset_id dataset = openml.datasets.get_dataset(data_id) dataset_name = dataset.name identity = { 'study': study, 'experiment': experiment, 'dataset': dataset_name, 'version': version } simulation = autem.Simulation(simulation_name, [ loaders.OpenMLLoader(data_id), scorers.LeagueScorer(scorers.accuracy_score), workflows.MasteryWorkflow(), baselines.BaselineStats(baseline_name), hyper_learners.ClassificationSVM(), reporters.Csv(path), ]) settings = autem.SimulationSettings(simulation) settings.set_identity(identity) settings.set_n_jobs(4) settings.set_seed(seed) simulation.run()
def make_benchmark_simulation(study, baseline_name, configuration, learner): experiment = baseline_name baseline_configuration = baselines.get_baseline_configuration(baseline_name) task_id = baseline_configuration["task_id"] task = openml.tasks.get_task(task_id) data_id = task.dataset_id version = get_version() configuration = baseline_configuration["Configuration"] if configuration is None else configuration learner = baseline_configuration["Learner"] if learner is None else learner configuration_valid = configuration in simulation_builders if not configuration_valid: print("Baseline %s configuration %s does not exist" % (baseline_name, configuration)) return None name = "'%s_%s_%s v%d'" % (study, experiment, configuration, version) identity = { 'study': study, 'experiment': experiment, 'dataset': baseline_name, 'version': version, 'configuration': configuration, } n_jobs = get_n_jobs() seed = 1 path = get_simulations_path().joinpath(study).joinpath(experiment) memory = str(path.joinpath("cache")) utility.prepare_OpenML() simulation_builder = simulation_builders[configuration] simulation = simulation_builder(name, identity, data_id, learner, path) settings = autem.SimulationSettings(simulation) settings.set_identity(identity) settings.set_n_jobs(4) settings.set_seed(seed) settings.set_memory(memory) return simulation
def make_standard_simulation(study, baseline_name, hyperlearner): prepare_OpenML() hyper_configuration = configuration.get_hyper_configuration(baseline_name) task_id = hyper_configuration["task_id"] task = openml.tasks.get_task(task_id) data_id = task.dataset_id name = "%s %s" % (baseline_name, study) path = configuration.get_hyper_simulations_path().joinpath(study).joinpath( baseline_name) n_jobs = 4 seed = 1 memory = str(path.joinpath("cache")) identity = { 'study': study, 'dataset': baseline_name, 'scorer': 'League1x10', 'workflow': 'standard', 'learner': hyperlearner, } simulation = autem.Simulation(name, [ loaders.OpenMLLoader(data_id), scorers.LeagueScorer(scorers.accuracy_score, [[1, 4, 5]]), workflows.StandardWorkflow(), learner_builders[hyperlearner](), reporters.Csv(path), ]) settings = autem.SimulationSettings(simulation) settings.set_identity(identity) settings.set_n_jobs(4) settings.set_seed(seed) settings.set_memory(memory) return simulation