Esempio n. 1
0
def getErrorList(fileList, euler_hx_gt, t_hx_gt, euler_hy_gt, t_hy_gt):
    euler_hx_error_mutlti = np.array([])
    t_hx_error_mutlti = np.array([])
    euler_hy_error_mutlti = np.array([])
    t_hy_error_mutlti = np.array([])
    for file in fileList:
        result = utils.json_load(file)
        if not result[0]["simu"] == 0.002:
            continue
        euler_hx_error = np.array([])
        t_hx_error = np.array([])
        euler_hy_error = np.array([])
        t_hy_error = np.array([])
        for i in range(5, 26):
            for dict in result:
                if dict["image_number"] == i:
                    Hx_temp = dict[Hx]
                    Hy_temp = dict[Hy]
            euler_hx_temp = transforms3d.euler.mat2euler(Hx_temp[:3, :3])
            t_hx_temp = Hx_temp[:3, 3]
            euler_hx_error_rx = min(
                abs(euler_hx_temp[0] - euler_hx_gt[0]),
                abs(euler_hx_temp[0] - euler_hx_gt[0] + 2 * 3.1415926),
                abs(euler_hx_temp[0] - euler_hx_gt[0] - 2 * 3.1415926))
            euler_hx_error_ry = min(
                abs(euler_hx_temp[1] - euler_hx_gt[1]),
                abs(euler_hx_temp[1] - euler_hx_gt[1] + 2 * 3.1415926),
                abs(euler_hx_temp[1] - euler_hx_gt[1] - 2 * 3.1415926))
            euler_hx_error_rz = min(
                abs(euler_hx_temp[2] - euler_hx_gt[2]),
                abs(euler_hx_temp[2] - euler_hx_gt[2] + 2 * 3.1415926),
                abs(euler_hx_temp[2] - euler_hx_gt[2] - 2 * 3.1415926))
            if max(euler_hx_error_rx, euler_hx_error_ry,
                   euler_hx_error_rz) > 0.08:
                print(file)
            euler_hx_error = np.append(
                euler_hx_error,
                np.mean(
                    np.array([
                        euler_hx_error_rx, euler_hx_error_ry, euler_hx_error_rz
                    ])))
            t_hx_error = np.append(t_hx_error,
                                   np.mean(np.abs(t_hx_temp - t_hx_gt)))

            euler_hy_temp = transforms3d.euler.mat2euler(Hy_temp[:3, :3])
            # if np.linalg.norm(euler_hy_temp - euler_hy_gt) > np.linalg.norm(euler_hy_temp + euler_hy_gt):
            #     euler_hy_temp = -euler_hy_temp
            t_hy_temp = Hy_temp[:3, 3]
            #euler_hy_error = np.append(euler_hy_error, np.abs(euler_hy_temp - euler_hy_gt))
            euler_hy_error_rx = min(
                abs(euler_hy_temp[0] - euler_hy_gt[0]),
                abs(euler_hy_temp[0] - euler_hy_gt[0] + 2 * 3.1415926),
                abs(euler_hy_temp[0] - euler_hy_gt[0] - 2 * 3.1415926))
            euler_hy_error_ry = min(
                abs(euler_hy_temp[1] - euler_hy_gt[1]),
                abs(euler_hy_temp[1] - euler_hy_gt[1] + 2 * 3.1415926),
                abs(euler_hy_temp[1] - euler_hy_gt[1] - 2 * 3.1415926))
            euler_hy_error_rz = min(
                abs(euler_hy_temp[2] - euler_hy_gt[2]),
                abs(euler_hy_temp[2] - euler_hy_gt[2] + 2 * 3.1415926),
                abs(euler_hy_temp[2] - euler_hy_gt[2] - 2 * 3.1415926))

            euler_hy_error = np.append(
                euler_hy_error,
                np.mean(
                    np.array([
                        euler_hy_error_rx, euler_hy_error_ry, euler_hy_error_rz
                    ])))
            t_hy_error = np.append(t_hy_error,
                                   np.mean(np.abs(t_hy_temp - t_hy_gt)))
        euler_hx_error_mutlti = np.append(euler_hx_error_mutlti,
                                          euler_hx_error)
        t_hx_error_mutlti = np.append(t_hx_error_mutlti, t_hx_error)
        euler_hy_error_mutlti = np.append(euler_hy_error_mutlti,
                                          euler_hy_error)
        t_hy_error_mutlti = np.append(t_hy_error_mutlti, t_hy_error)
    euler_hx_error_mutlti = euler_hx_error_mutlti.reshape(
        [-1, np.size(x_range)])
    t_hx_error_mutlti = t_hx_error_mutlti.reshape([-1, np.size(x_range)])
    euler_hy_error_mutlti = euler_hy_error_mutlti.reshape(
        [-1, np.size(x_range)])
    t_hy_error_mutlti = t_hy_error_mutlti.reshape([-1, np.size(x_range)])
    return euler_hx_error_mutlti, t_hx_error_mutlti, euler_hy_error_mutlti, t_hy_error_mutlti
Esempio n. 2
0
def getErrorList(rootdir,fileList,euler_hx_gt,t_hx_gt,euler_hy_gt,t_hy_gt,method_list,name_list):
    # hx_df_euler = pd.DataFrame(columns=('image number', 'euler_error', 'method'))
    # hy_df_euler = pd.DataFrame(columns=('image number', 'euler_error', 'method'))
    # hx_df_t = pd.DataFrame(columns=('image number', 't_error', 'method'))
    # hy_df_t = pd.DataFrame(columns=('image number', 't_error', 'method'))

    image_number = []
    hx_euler = []
    hy_euler = []
    hx_t= []
    hy_t = []
    method = []


    for file in fileList:
        name=None
        for i in range(len(method_list)):
            if file.startswith(method_list[i]):
                name = name_list[i]
        if name is None:
            continue
        result = utils.json_load(os.path.join(rootdir,file))
        if not result[0]["simu"]==0.002:
            continue
        for dict in result:
            number = dict["image_number"]
            if number<5:
                continue
            Hx_temp = dict[Hx]
            Hy_temp = dict[Hy]
            euler_hx_temp = transforms3d.euler.mat2euler(Hx_temp[:3, :3])
            t_hx_temp = Hx_temp[:3, 3]
            euler_hx_error_rx = min(abs(euler_hx_temp[0] - euler_hx_gt[0]),
                                    abs(euler_hx_temp[0] - euler_hx_gt[0] + 2 * 3.1415926),
                                    abs(euler_hx_temp[0] - euler_hx_gt[0] - 2 * 3.1415926))
            euler_hx_error_ry = min(abs(euler_hx_temp[1] - euler_hx_gt[1]),
                                    abs(euler_hx_temp[1] - euler_hx_gt[1] + 2 * 3.1415926),
                                    abs(euler_hx_temp[1] - euler_hx_gt[1] - 2 * 3.1415926))
            euler_hx_error_rz = min(abs(euler_hx_temp[2] - euler_hx_gt[2]),
                                    abs(euler_hx_temp[2] - euler_hx_gt[2] + 2 * 3.1415926),
                                    abs(euler_hx_temp[2] - euler_hx_gt[2] - 2 * 3.1415926))
            if max(euler_hx_error_rx,euler_hx_error_ry,euler_hx_error_rz)>0.08 :
                print(file)
                continue
            hx_euler_error = np.mean(np.array([euler_hx_error_rx, euler_hx_error_ry, euler_hx_error_rz]))
            hx_t_error = np.mean(np.abs(t_hx_temp - t_hx_gt))
            image_number.append(number)

            hx_euler.append(hx_euler_error)
            hx_t.append(hx_t_error)
            method.append(name)
            # hx_df_euler = hx_df_euler.append({'image number':number,"euler_error":hx_euler_error,"method":name},ignore_index=True)
            # hx_df_t = hx_df_t.append({'image number':number, 't_error':hx_t_error, 'method':name},ignore_index=True)
            euler_hy_temp = transforms3d.euler.mat2euler(Hy_temp[:3, :3])
            t_hy_temp = Hy_temp[:3, 3]
            euler_hy_error_rx = min(abs(euler_hy_temp[0] - euler_hy_gt[0]),
                                    abs(euler_hy_temp[0] - euler_hy_gt[0] + 2 * 3.1415926),
                                    abs(euler_hy_temp[0] - euler_hy_gt[0] - 2 * 3.1415926))
            euler_hy_error_ry = min(abs(euler_hy_temp[1] - euler_hy_gt[1]),
                                    abs(euler_hy_temp[1] - euler_hy_gt[1] + 2 * 3.1415926),
                                    abs(euler_hy_temp[1] - euler_hy_gt[1] - 2 * 3.1415926))
            euler_hy_error_rz = min(abs(euler_hy_temp[2] - euler_hy_gt[2]),
                                    abs(euler_hy_temp[2] - euler_hy_gt[2] + 2 * 3.1415926),
                                    abs(euler_hy_temp[2] - euler_hy_gt[2] - 2 * 3.1415926))
            hy_euler_error = np.mean(np.array([euler_hy_error_rx, euler_hy_error_ry, euler_hy_error_rz]))
            hy_t_error = np.mean(np.abs(t_hy_temp - t_hy_gt))
            #
            hy_euler.append(hy_euler_error)
            hy_t.append(hy_t_error)
    hx_df_euler = pd.DataFrame({"image number":image_number,"error":hx_euler,"method":method})
    hx_df_t = pd.DataFrame({"image number":image_number,"error":hx_t,"method":method})
    hy_df_euler = pd.DataFrame({"image number":image_number,"error":hy_euler,"method":method})
    hy_df_t = pd.DataFrame({"image number":image_number,"error":hy_t,"method":method})
    return hx_df_euler,hy_df_euler,hx_df_t,hy_df_t
Esempio n. 3
0
def getErrorList(fileList, euler_camera2end_gt, t_camera2end_gt,
                 euler_obj2base_gt, t_obj2base_gt):
    euler_camera2end_error_mutlti = np.array([])
    t_camera2end_error_mutlti = np.array([])
    euler_obj2base_error_mutlti = np.array([])
    t_obj2base_error_mutlti = np.array([])
    for file in fileList:
        result = utils.json_load(file)
        if not result[0]["simu"] == 0.002:
            continue
        euler_camera2end_error = np.array([])
        t_camera2end_error = np.array([])
        euler_obj2base_error = np.array([])
        t_obj2base_error = np.array([])
        for i in range(5, 31):
            for dict in result:
                if dict["image_number"] == i:
                    Hcamera2end_temp = dict["Hcamera2end"]
                    Hobj2base_temp = dict["Hobj2base"]
            euler_camera2end_temp = transforms3d.euler.mat2euler(
                Hcamera2end_temp[:3, :3])
            t_camera2end_temp = Hcamera2end_temp[:3, 3]
            euler_camera2end_error_rx = min(
                abs(euler_camera2end_temp[0] - euler_camera2end_gt[0]),
                abs(euler_camera2end_temp[0] - euler_camera2end_gt[0] +
                    2 * 3.1415926),
                abs(euler_camera2end_temp[0] - euler_camera2end_gt[0] -
                    2 * 3.1415926))
            euler_camera2end_error_ry = min(
                abs(euler_camera2end_temp[1] - euler_camera2end_gt[1]),
                abs(euler_camera2end_temp[1] - euler_camera2end_gt[1] +
                    2 * 3.1415926),
                abs(euler_camera2end_temp[1] - euler_camera2end_gt[1] -
                    2 * 3.1415926))
            euler_camera2end_error_rz = min(
                abs(euler_camera2end_temp[2] - euler_camera2end_gt[2]),
                abs(euler_camera2end_temp[2] - euler_camera2end_gt[2] +
                    2 * 3.1415926),
                abs(euler_camera2end_temp[2] - euler_camera2end_gt[2] -
                    2 * 3.1415926))
            euler_camera2end_error = np.append(
                euler_camera2end_error,
                np.array([
                    euler_camera2end_error_rx, euler_camera2end_error_ry,
                    euler_camera2end_error_rz
                ]))
            t_camera2end_error = np.append(
                t_camera2end_error,
                np.abs(t_camera2end_temp - t_camera2end_gt))

            euler_obj2base_temp = transforms3d.euler.mat2euler(
                Hobj2base_temp[:3, :3])
            # if np.linalg.norm(euler_obj2base_temp - euler_obj2base_gt) > np.linalg.norm(euler_obj2base_temp + euler_obj2base_gt):
            #     euler_obj2base_temp = -euler_obj2base_temp
            t_obj2base_temp = Hobj2base_temp[:3, 3]
            #euler_obj2base_error = np.append(euler_obj2base_error, np.abs(euler_obj2base_temp - euler_obj2base_gt))
            euler_obj2base_error_rx = min(
                abs(euler_obj2base_temp[0] - euler_obj2base_gt[0]),
                abs(euler_obj2base_temp[0] - euler_obj2base_gt[0] +
                    2 * 3.1415926),
                abs(euler_obj2base_temp[0] - euler_obj2base_gt[0] -
                    2 * 3.1415926))
            euler_obj2base_error_ry = min(
                abs(euler_obj2base_temp[1] - euler_obj2base_gt[1]),
                abs(euler_obj2base_temp[1] - euler_obj2base_gt[1] +
                    2 * 3.1415926),
                abs(euler_obj2base_temp[1] - euler_obj2base_gt[1] -
                    2 * 3.1415926))
            euler_obj2base_error_rz = min(
                abs(euler_obj2base_temp[2] - euler_obj2base_gt[2]),
                abs(euler_obj2base_temp[2] - euler_obj2base_gt[2] +
                    2 * 3.1415926),
                abs(euler_obj2base_temp[2] - euler_obj2base_gt[2] -
                    2 * 3.1415926))
            euler_obj2base_error = np.append(
                euler_obj2base_error,
                np.array([
                    euler_obj2base_error_rx, euler_obj2base_error_ry,
                    euler_obj2base_error_rz
                ]))
            t_obj2base_error = np.append(
                t_obj2base_error, np.abs(t_obj2base_temp - t_obj2base_gt))
        euler_camera2end_error = euler_camera2end_error.reshape([-1, 3])
        t_camera2end_error = t_camera2end_error.reshape([-1, 3])
        euler_obj2base_error = euler_obj2base_error.reshape([-1, 3])
        t_obj2base_error = t_obj2base_error.reshape([-1, 3])
        euler_camera2end_error_mutlti = np.append(
            euler_camera2end_error_mutlti, euler_camera2end_error)
        t_camera2end_error_mutlti = np.append(t_camera2end_error_mutlti,
                                              t_camera2end_error)
        euler_obj2base_error_mutlti = np.append(euler_obj2base_error_mutlti,
                                                euler_obj2base_error)
        t_obj2base_error_mutlti = np.append(t_obj2base_error_mutlti,
                                            t_obj2base_error)
    euler_camera2end_error_mutlti = euler_camera2end_error_mutlti.reshape(
        [-1, 26, 3])
    t_camera2end_error_mutlti = t_camera2end_error_mutlti.reshape([-1, 26, 3])
    euler_obj2base_error_mutlti = euler_obj2base_error_mutlti.reshape(
        [-1, 26, 3])
    t_obj2base_error_mutlti = t_obj2base_error_mutlti.reshape([-1, 26, 3])
    euler_camera2end_error_mean = np.mean(euler_camera2end_error_mutlti,
                                          axis=0)
    t_camera2end_error_mean = np.mean(t_camera2end_error_mutlti, axis=0)
    euler_obj2base_error_mean = np.mean(euler_obj2base_error_mutlti, axis=0)
    t_obj2base_error_mean = np.mean(t_obj2base_error_mutlti, axis=0)
    return euler_camera2end_error_mean, t_camera2end_error_mean, euler_obj2base_error_mean, t_obj2base_error_mean
from utils import depthUtils
from board import apriltagboard
import numpy as np


def get_robot_pose(Hcam2end, Hpencil2cam, cur_Hend2base, cur_Hobj2camera,
                   point):
    Hobj2pencil = np.identity(4)
    Hobj2pencil[:3, 3] = -point[:]
    Hrobot = np.dot(
        np.dot(cur_Hend2base, np.dot(Hcam2end, cur_Hobj2camera)),
        np.linalg.inv(np.dot(Hcam2end, np.dot(Hpencil2cam, Hobj2pencil))))
    return Hrobot


result = utils.json_load("../real_data/2020_12_17_17_59/result.json")
#result = utils.json_load("../real_data/2020_12_16_12_17/result.json")
Hcam2end = result[-1]["Hcamera2end"]
board = apriltagboard.AprilTagBoard("../config/apriltag_paper.yml",
                                    "../config/tagId.csv")
camera = kinect.Kinect(1026, "../config/intrinsic_1217.yml")
robot = aubo.robot(port=1025)
Hobj2base = result[-1]["Hobj2base"]
border_center = np.array([(board.tag_size + board.markerSeparation) * 3,
                          (board.tag_size + board.markerSeparation) * 2, 0,
                          1]).reshape([4, 1])
border_cneter_ = np.dot(Hobj2base, border_center)
width = (board.tag_size + board.markerSeparation) * 7
height = (board.tag_size + board.markerSeparation) * 5
q = transforms3d.quaternions.mat2quat(Hobj2base[:3, :3])
robot.build_board(border_cneter_[0, 0], border_cneter_[1, 0],
else:
    import cv2
from camera import kinect
from robot import aubo
import numpy as np
from utils import depthUtils
from auto import utils
'''
get Hpencil2cam 
'''
board = apriltagboard.AprilTagBoard("../config/apriltag_real.yml",
                                    "../config/tagId.csv")
# camera = kinect.Kinect(1026,"../config/intrinsic_rgb.yml")
# camera = kinect.Kinect(1026,"../real_data/intrinisc_data/intrinsic.yml")
# camera = kinect.Kinect(1026,"../config/intrinsic_1217.yml")
result = utils.json_load("../real_data/2020_12_19_15_30/result.json")
#result = utils.json_load("../real_data/2020_12_16_12_17/result.json")
Hcam2end = result[-1]["Hcamera2end"]
Hobj2base = result[-1]["Hobj2base"]
robot = aubo.robot(1025)

#camerapose1 = board.extrinsic_opt(camera.intrinsic, camera.dist,extrinsic_depth,imgpoint,objpoint)
falg, robot_pose = robot.get_pose()
pencil_end = np.array([-board.tag_size / 2, -board.tag_size / 2, 0])
Hobj2pencil = np.identity(4)
Hobj2pencil[:3, 3] = -pencil_end[:]

Hpencil2end = np.dot(np.dot(np.linalg.inv(robot_pose), Hobj2base),
                     np.linalg.inv(Hobj2pencil))
print(Hpencil2end)
fp = cv2.FileStorage("../config/Hpencil2end.yml", cv2.FileStorage_WRITE)
def getErrorList(fileList,euler_camera2end_gt,t_camera2end_gt,euler_obj2base_gt,t_obj2base_gt):
    euler_camera2end_error_mutlti = np.array([])
    t_camera2end_error_mutlti = np.array([])
    euler_obj2base_error_mutlti = np.array([])
    t_obj2base_error_mutlti = np.array([])
    noise_data = []
    for j in range(6):
        noise_data.append([])
    for file in fileList:
        result = utils.json_load(file)
        for dict in result:
            if not dict["image_number"] ==20:
                continue
            index = int(dict["simu"]/0.002)
            noise_data[index].append(dict)
    for group in noise_data:
        euler_camera2end_error = np.array([])
        t_camera2end_error = np.array([])
        euler_obj2base_error = np.array([])
        t_obj2base_error = np.array([])
        for data in group:
            Hcamera2end_temp = data["Hcamera2end"]
            Hobj2base_temp = data["Hobj2base"]
            euler_camera2end_temp = transforms3d.euler.mat2euler(Hcamera2end_temp[:3, :3])
            t_camera2end_temp = Hcamera2end_temp[:3, 3]
            euler_camera2end_error_rx = min(abs(euler_camera2end_temp[0] - euler_camera2end_gt[0]),
                                            abs(euler_camera2end_temp[0] - euler_camera2end_gt[0] + 2 * 3.1415926),
                                            abs(euler_camera2end_temp[0] - euler_camera2end_gt[0] - 2 * 3.1415926))
            euler_camera2end_error_ry = min(abs(euler_camera2end_temp[1] - euler_camera2end_gt[1]),
                                            abs(euler_camera2end_temp[1] - euler_camera2end_gt[1] + 2 * 3.1415926),
                                            abs(euler_camera2end_temp[1] - euler_camera2end_gt[1] - 2 * 3.1415926))
            euler_camera2end_error_rz = min(abs(euler_camera2end_temp[2] - euler_camera2end_gt[2]),
                                            abs(euler_camera2end_temp[2] - euler_camera2end_gt[2] + 2 * 3.1415926),
                                            abs(euler_camera2end_temp[2] - euler_camera2end_gt[2] - 2 * 3.1415926))
            euler_camera2end_error = np.append(euler_camera2end_error, np.array(
                [euler_camera2end_error_rx, euler_camera2end_error_ry, euler_camera2end_error_rz]))
            t_camera2end_error = np.append(t_camera2end_error, np.abs(t_camera2end_temp - t_camera2end_gt))

            euler_obj2base_temp = transforms3d.euler.mat2euler(Hobj2base_temp[:3, :3])
            # if np.linalg.norm(euler_obj2base_temp - euler_obj2base_gt) > np.linalg.norm(euler_obj2base_temp + euler_obj2base_gt):
            #     euler_obj2base_temp = -euler_obj2base_temp
            t_obj2base_temp = Hobj2base_temp[:3, 3]
            # euler_obj2base_error = np.append(euler_obj2base_error, np.abs(euler_obj2base_temp - euler_obj2base_gt))
            euler_obj2base_error_rx = min(abs(euler_obj2base_temp[0] - euler_obj2base_gt[0]),
                                          abs(euler_obj2base_temp[0] - euler_obj2base_gt[0] + 2 * 3.1415926),
                                          abs(euler_obj2base_temp[0] - euler_obj2base_gt[0] - 2 * 3.1415926))
            euler_obj2base_error_ry = min(abs(euler_obj2base_temp[1] - euler_obj2base_gt[1]),
                                          abs(euler_obj2base_temp[1] - euler_obj2base_gt[1] + 2 * 3.1415926),
                                          abs(euler_obj2base_temp[1] - euler_obj2base_gt[1] - 2 * 3.1415926))
            euler_obj2base_error_rz = min(abs(euler_obj2base_temp[2] - euler_obj2base_gt[2]),
                                          abs(euler_obj2base_temp[2] - euler_obj2base_gt[2] + 2 * 3.1415926),
                                          abs(euler_obj2base_temp[2] - euler_obj2base_gt[2] - 2 * 3.1415926))
            euler_obj2base_error = np.append(euler_obj2base_error, np.array(
                [euler_obj2base_error_rx, euler_obj2base_error_ry, euler_obj2base_error_rz]))
            t_obj2base_error = np.append(t_obj2base_error, np.abs(t_obj2base_temp - t_obj2base_gt))
        euler_camera2end_error = euler_camera2end_error.reshape([-1, 3])
        t_camera2end_error = t_camera2end_error.reshape([-1, 3])
        euler_obj2base_error = euler_obj2base_error.reshape([-1, 3])
        t_obj2base_error = t_obj2base_error.reshape([-1, 3])
        euler_camera2end_error_mutlti = np.append(euler_camera2end_error_mutlti, np.mean(euler_camera2end_error,axis=0))
        t_camera2end_error_mutlti = np.append(t_camera2end_error_mutlti, np.mean(t_camera2end_error,axis=0))
        euler_obj2base_error_mutlti = np.append(euler_obj2base_error_mutlti, np.mean(euler_obj2base_error,axis=0))
        t_obj2base_error_mutlti = np.append(t_obj2base_error_mutlti, np.mean(t_obj2base_error,axis=0))
    euler_camera2end_error_mutlti = euler_camera2end_error_mutlti.reshape([ 6, 3])
    t_camera2end_error_mutlti = t_camera2end_error_mutlti.reshape([6, 3])
    euler_obj2base_error_mutlti = euler_obj2base_error_mutlti.reshape([ 6, 3])
    t_obj2base_error_mutlti = t_obj2base_error_mutlti.reshape([ 6, 3])
    return euler_camera2end_error_mutlti, t_camera2end_error_mutlti, euler_obj2base_error_mutlti, t_obj2base_error_mutlti
Esempio n. 7
0
    method={
        "no_Lock":0,
        "std":1,
        "no_lock_std":3,
        #"rme":2,
        #"no_lock_rme":4,
        "random":5,
        "ias":6
    }
    board = apriltagboard.AprilTagBoard("../config/apriltag.yml", "../config/tagId.csv")
    cliend = vrep_connect.getVrep_connect()
    camera = Kinect_test.Camera(cliend,"../config/intrinsic_gt.yml")
    robot = LBR4p.Robot(cliend)
    move_lock = lock(robot,camera)
    threads = []
    init_robot_pose_list = utils.json_load("../config/init_robot_pose.json")
    for j in range(6):
        for i in range(30):
            simu = j*0.002
            robot.set_simu(simu)
            print("start to cal {} iters data".format(i))
            start = time.time()
            # 中间写上代码块

            auto_handeye = auto_handeye_calibration_thread.auto_handeye_calibration(board, robot, camera,
                                                                                    "../config/auto_set.yml", move_lock)
            auto_handeye.set_init_robot_pose(random.choice(init_robot_pose_list))
            auto_handeye.init_handeye()
            auto_handeye.handeye_cali()
            Hx = auto_handeye.Hx
            Hy = auto_handeye.Hy