def test_para_with_mixture_of_types(self): img = Img("picture.png") ahref = Link("http://example.com") p = Para("Beautiful picture:", img, "See more at", ahref) self.assertEqual( p.html(), "<p>Beautiful picture: " "<img src='picture.png' /> " "See more at " "<a href='http://example.com'>" "http://example.com</a></p>")
def test_img_with_href(self): img = Img('picture.png', href="http://awesome.pix.com/") self.assertEqual( img.html(), "<a href='http://awesome.pix.com/'>" "<img src='picture.png' /></a>")
def test_img_with_title(self): img = Img('picture.png', title="An awesome picture") self.assertEqual( img.html(), "<img src='picture.png' " "title='An awesome picture' />")
def test_img_with_alt_text(self): img = Img('picture.png', alt="An awesome picture") self.assertEqual( img.html(), "<img src='picture.png' " "alt='An awesome picture' />")
def test_img_with_name(self): img = Img('picture.png', name="awesome-picture") self.assertEqual(img.html(), "<img id='awesome-picture' " "src='picture.png' />")
def test_img_with_height_and_width(self): img = Img('picture.png', height=100, width=150) self.assertEqual( img.html(), "<img src='picture.png' " "height='100' width='150' />")
def test_img(self): img = Img('picture.png') self.assertEqual(img.html(), "<img src='picture.png' />")
plot_filen = os.path.join(out_dir, "reads_per_stage.png") reads_per_stage = \ pd.Series([data.total_reads,], ['Nreads_initial',]).append( df[cols].sum()) print reads_per_stage fig = plt.figure() plot = reads_per_stage.plot.bar(figsize=(6, 4)) labels = ['Initial', 'Assigned', 'Quality filtered', 'Trimmed'] if contaminant_filtered: labels.append('Uncontaminated') plot.set_xticklabels(labels, rotation=45) plot.set_ylabel("#read pairs") plot.get_figure().savefig(plot_filen, bbox_inches='tight') general_info.add( Img(os.path.relpath(plot_filen, os.path.dirname(out_file)))) general_info.add(reads_per_stage.to_frame().to_html(header=False)) toc_list.add_item(Link(general_info.title, general_info)) # Low read counts low_read_threshold = data.total_assigned_reads / data.total_barcodes / 10 read_counts = report.add_section("Read counts", name="read_counts") low_read_count = df[['Barcode', 'Nreads']].query( "Nreads < %d" % low_read_threshold).query("Nreads > 0") low_reads = len(low_read_count) no_reads = len(df.query("Nreads == 0")) tbl = Table(columns=('name', 'value')) tbl.no_header() data_items = (('Mean read count per barcode', 'mean_read_count'), ('Median read count per barcode', 'median_read_count')) for item in data_items: