def test_autoai_libs_tam_1(self): import autoai_libs.cognito.transforms.transform_extras import numpy as np from autoai_libs.cognito.transforms.transform_utils import TAM from lale.lib.sklearn import LogisticRegression as LR tam = TAM( tans_class=autoai_libs.cognito.transforms.transform_extras.IsolationForestAnomaly, name="isoforestanomaly", col_names=["a", "b", "c"], col_dtypes=[np.dtype("float32"), np.dtype("float32"), np.dtype("float32")], ) pipeline = tam >> LR() expected = """from autoai_libs.cognito.transforms.transform_utils import TAM import autoai_libs.cognito.transforms.transform_extras import numpy as np from sklearn.linear_model import LogisticRegression as LR from sklearn.pipeline import make_pipeline tam = TAM( tans_class=autoai_libs.cognito.transforms.transform_extras.IsolationForestAnomaly, name="isoforestanomaly", col_names=["a", "b", "c"], col_dtypes=[ np.dtype("float32"), np.dtype("float32"), np.dtype("float32"), ], ) pipeline = make_pipeline(tam, LR())""" self._roundtrip( expected, lale.pretty_print.to_string(pipeline, astype="sklearn") )
def test_autoai_libs_tam_1(self): from autoai_libs.cognito.transforms.transform_utils import TAM import autoai_libs.cognito.transforms.transform_extras import numpy as np from lale.lib.sklearn import LogisticRegression as LR tam = TAM(tans_class=autoai_libs.cognito.transforms.transform_extras. IsolationForestAnomaly, name='isoforestanomaly', col_names=['a', 'b', 'c'], col_dtypes=[ np.dtype('float32'), np.dtype('float32'), np.dtype('float32') ]) pipeline = tam >> LR() expected = \ """from autoai_libs.cognito.transforms.transform_utils import TAM import autoai_libs.cognito.transforms.transform_extras import numpy as np from lale.lib.sklearn import LogisticRegression as LR import lale lale.wrap_imported_operators() tam = TAM(tans_class=autoai_libs.cognito.transforms.transform_extras.IsolationForestAnomaly, name='isoforestanomaly', col_names=['a', 'b', 'c'], col_dtypes=[np.dtype('float32'), np.dtype('float32'), np.dtype('float32')]) pipeline = tam >> LR()""" self._roundtrip(expected, lale.pretty_print.to_string(pipeline))
def test_autoai_libs_tam_2(self): from lale.lib.autoai_libs import TAM import numpy as np from lightgbm import LGBMClassifier from sklearn.decomposition import PCA from lale.operators import make_pipeline pca = PCA(copy=False) tam = TAM(tans_class=pca, name='pca', col_names=['a', 'b', 'c'], col_dtypes=[ np.dtype('float32'), np.dtype('float32'), np.dtype('float32') ]) lgbm_classifier = LGBMClassifier(class_weight='balanced', learning_rate=0.18) pipeline = make_pipeline(tam, lgbm_classifier) expected = \ """from lale.lib.autoai_libs import TAM import sklearn.decomposition.pca import numpy as np from lightgbm import LGBMClassifier from lale.operators import make_pipeline tam = TAM(tans_class=sklearn.decomposition.pca.PCA(copy=False, iterated_power='auto', n_components=None, random_state=None, svd_solver='auto', tol=0.0, whiten=False), name='pca', col_names=['a', 'b', 'c'], col_dtypes=[np.dtype('float32'), np.dtype('float32'), np.dtype('float32')]) lgbm_classifier = LGBMClassifier(class_weight='balanced', learning_rate=0.18) pipeline = make_pipeline(tam, lgbm_classifier)""" self._roundtrip( expected, lale.pretty_print.to_string(pipeline, combinators=False))
def test_autoai_libs_tam_2(self): from lale.lib.autoai_libs import TAM import numpy as np from lightgbm import LGBMClassifier from sklearn.decomposition import PCA from lale.operators import make_pipeline pca = PCA(copy=False) tam = TAM(tans_class=pca, name='pca', col_names=['a', 'b', 'c'], col_dtypes=[np.dtype('float32'), np.dtype('float32'), np.dtype('float32')]) lgbm_classifier = LGBMClassifier(class_weight='balanced', learning_rate=0.18) pipeline = make_pipeline(tam, lgbm_classifier) expected = """from autoai_libs.cognito.transforms.transform_utils import TAM import sklearn.decomposition import numpy as np from lightgbm import LGBMClassifier from lale.operators import make_pipeline tam = TAM( tans_class=sklearn.decomposition.PCA(copy=False), name="pca", col_names=["a", "b", "c"], col_dtypes=[ np.dtype("float32"), np.dtype("float32"), np.dtype("float32"), ], ) lgbm_classifier = LGBMClassifier(class_weight="balanced", learning_rate=0.18) pipeline = make_pipeline(tam, lgbm_classifier)""" self._roundtrip(expected, lale.pretty_print.to_string(pipeline, combinators=False))