Esempio n. 1
0
    def train_AE(X_train, X_test, encoder_size, decoder_size, epochs, lr):
        model = autoencoder.AutoEncoder(encoder_size, decoder_size).to(device)
        autoencoder.train(model,
                          dataset=X_train,
                          num_epochs=epochs,
                          batch_size=batch_size,
                          lr=lr)

        # Calculate training error
        AE_reconstruction = model(X_train)
        training_error = np.mean(
            ((X_train - AE_reconstruction[0])**2).cpu().detach().numpy())

        # Calculate test error
        AE_reconstruction = model(X_test)
        test_error = np.mean(
            ((X_test - AE_reconstruction[0])**2).cpu().detach().numpy())

        return model, training_error, test_error
Esempio n. 2
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--dataset_ratio",
        type=float,
        default=1,
        help="the purcentage of data used in the dataset (default: 1)")
    parser.add_argument("--image_size",
                        type=int,
                        default=512,
                        help="size of the input image (default: 512)")
    parser.add_argument("--depth",
                        type=int,
                        default=6,
                        help="depth of the autoencoder (default: 6)")
    parser.add_argument(
        "--num_block",
        type=int,
        default=3,
        help="number of blocks of the autoencoder (default: 3)")
    parser.add_argument("--epoch",
                        type=int,
                        default=1,
                        help="number of epoch (default: 1)")
    parser.add_argument("--batch",
                        type=int,
                        default=100,
                        help="number of batch (default: 100)")
    parser.add_argument("--valpct",
                        type=float,
                        default=0.2,
                        help="proportion of test data (default: 0.2)")
    parser.add_argument("--num_threads",
                        type=int,
                        default=1,
                        help="number of thread used (default: 1)")
    parser.add_argument("--create_csv",
                        type=bool,
                        default=False,
                        help="create or not csv file (default: False)")
    parser.add_argument("--log",
                        default=False,
                        action='store_true',
                        help="Write log or not (default: False)")
    parser.add_argument("--l2_reg",
                        type=int,
                        default=0.001,
                        help="L2 regularisation (default: 0.001)")

    args = parser.parse_args()

    # if args.create_csv:
    #     g_csv.generate_csv(DATA_PATH + CSV_NAME, args.num_var,
    #                        args.num_const, args.num_prob)

    valid_ratio = args.valpct  # Going to use 80%/20% split for train/valid

    data_transforms = transforms.Compose([ToTensor(), Normalize()])

    full_dataset = ImageLoader(csv_file_path=LABEL_FILE_PATH,
                               image_directory=IMAGE_FOLDER_PATH,
                               mask_directory=MASK_FOLDER_PATH,
                               dataset_size=int(args.dataset_ratio *
                                                DATASET_SIZE),
                               image_size=args.image_size,
                               transform=data_transforms)

    nb_train = int((1.0 - valid_ratio) * len(full_dataset))
    nb_test = len(full_dataset) - nb_train

    print("Size of full data set: ", len(full_dataset))
    print("Size of training data: ", nb_train)
    print("Size of testing data:  ", nb_test)
    train_dataset, test_dataset = torch.utils.data.dataset.random_split(
        full_dataset, [nb_train, nb_test])

    train_loader = DataLoader(dataset=train_dataset,
                              batch_size=args.batch,
                              shuffle=True,
                              num_workers=args.num_threads)

    test_loader = DataLoader(dataset=test_dataset,
                             batch_size=args.batch,
                             shuffle=True,
                             num_workers=args.num_threads)
    # TODO params
    # num_param = args.num_var + args.num_const + (args.num_var*args.num_const)
    model = AutoEncoder(num_block=args.num_block, depth=args.depth)
    # print("Network architechture:\n", model)

    use_gpu = torch.cuda.is_available()
    if use_gpu:
        device = torch.device('cuda')
    else:
        device = torch.device('cpu')

    model.to(device)

    # f_loss = nn.BCEWithLogitsLoss()
    f_loss = loss.Custom_loss()

    # define optimizer
    optimizer = torch.optim.Adam(model.parameters(), weight_decay=args.l2_reg)

    # Make run directory
    run_name = "run-"
    LogManager = lw.LogManager(LOG_DIR, run_name)
    run_dir_path, num_run = LogManager.generate_unique_dir()

    # setup model checkpoint
    path_model_check_point = run_dir_path + MODEL_DIR
    if not os.path.exists(path_model_check_point):
        os.mkdir(path_model_check_point)
    model_checkpoint = ModelCheckpoint(path_model_check_point + BEST_MODELE,
                                       model)

    # top_logdir = LOG_DIR + FC1
    # if not os.path.exists(top_logdir):
    #     os.mkdir(top_logdir)
    # model_checkpoint = ModelCheckpoint(top_logdir + BEST_MODELE, model)

    if args.log:
        print("Writing log")
        # generate unique folder for new run
        tensorboard_writer = SummaryWriter(log_dir=run_dir_path,
                                           filename_suffix=".log")
        LogManager.set_tensorboard_writer(tensorboard_writer)
        LogManager.summary_writer(model, optimizer)

        # write short description of the run
        run_desc = "Epoch{}".format(args.epoch)
        log_file_path = LOG_DIR + run_desc + "Run{}".format(num_run) + ".log"
        # LogManager.summary_writer(model, optimizer)

        # write short description of the run
        # run_desc = "Epoch{}Reg{}Var{}Const{}CLoss{}Dlayer{}Alpha{}".format(
        #     args.num_epoch,
        #     args.l2_reg,
        #     args.num_var,
        #     args.num_const,
        #     args.custom_loss,
        #     args.num_deep_layer,
        #     args.alpha)

        # log_file_path = LOG_DIR + "Run{}".format(num_run) + run_desc + ".log"
        # log_file_path = lw.generate_unique_logpath(LOG_DIR, "Linear")

    with tqdm(total=args.epoch) as pbar:
        for t in range(args.epoch):
            pbar.update(1)
            pbar.set_description("Epoch {}".format(t))
            # print(DIEZ + "Epoch Number: {}".format(t) + DIEZ)
            train_loss, train_acc = train(model, train_loader, f_loss,
                                          optimizer, device, LogManager)

            progress(train_loss, train_acc)
            # time.sleep(0.5)

            val_loss, val_acc = test(model,
                                     test_loader,
                                     f_loss,
                                     device,
                                     log_manager=LogManager)
            print(" Validation : Loss : {:.4f}, Acc : {:.4f}".format(
                val_loss, val_acc))

            model_checkpoint.update(val_loss)

            # lw.write_log(log_file_path, val_acc, val_loss, train_acc, train_loss)

            if args.log:
                tensorboard_writer.add_scalars("Loss/", {
                    'train_loss': train_loss,
                    'val_loss': val_loss
                }, t)
            # tensorboard_writer.add_scalar(METRICS + 'train_loss', train_loss, t)
            # tensorboard_writer.add_scalar(METRICS + 'train_acc',  train_acc, t)
            # tensorboard_writer.add_scalar(METRICS + 'val_loss', val_loss, t)
            # tensorboard_writer.add_scalar(METRICS + 'val_acc',  val_acc, t)
            LogManager.write_log(log_file_path, val_acc, val_loss, train_acc,
                                 train_loss)

    model.load_state_dict(torch.load(path_model_check_point + BEST_MODELE))
    print(DIEZ + " Final Test " + DIEZ)
    _, _ = test(model,
                train_loader,
                f_loss,
                device,
                final_test=True,
                log_manager=LogManager,
                txt="training")

    test_loss, test_acc = test(model,
                               test_loader,
                               f_loss,
                               device,
                               log_manager=LogManager,
                               final_test=True)

    print(" Test       : Loss : {:.4f}, Acc : {:.4f}".format(
        test_loss, test_acc))
Esempio n. 3
0
# Build matrix
keep_data = []
for row in data:
    keep_row = {}
    for j in keep_header_js:
        h = headers[j]
        if j < len(row) and row[j] == '' and args.zero:
            keep_row[h] = 0.0
        elif j < len(row) and row[j]:
            keep_row[h] = float(row[j])

    if keep_row:
        keep_data.append(keep_row)

keep_headers = [headers[j] for j in keep_header_js]

# Compress json output
json.encoder.FLOAT_REPR = lambda f: ("%.4f" % f)
json.encoder.c_make_encoder = None

print 'training'
for model in autoencoder.train(keep_headers,
                               keep_data,
                               bins=args.bins,
                               n_hidden_units=args.n_hidden_units,
                               n_hidden_layers=args.n_hidden_layers):
    js = 'var data = %s;' % json.dumps(model)
    f = open(args.output, 'w')
    f.write(js)
    f.close()
Esempio n. 4
0
    
# Build matrix
keep_data = []
for row in data:
    keep_row = {}
    for j in keep_header_js:
        h = headers[j]
        if j < len(row) and row[j] == '' and args.zero:
            keep_row[h] = 0.0
        elif j < len(row) and row[j]:
            keep_row[h] = float(row[j])

    if keep_row:
        keep_data.append(keep_row)

keep_headers = [headers[j] for j in keep_header_js]

# Compress json output
json.encoder.FLOAT_REPR = lambda f: ("%.4f" % f)
json.encoder.c_make_encoder = None

print 'training'
for model in autoencoder.train(keep_headers, keep_data,
                               bins=args.bins,
                               n_hidden_units=args.n_hidden_units,
                               n_hidden_layers=args.n_hidden_layers):
    js = 'var data = %s;' % json.dumps(model)
    f = open(args.output, 'w')
    f.write(js)
    f.close()
Esempio n. 5
0
weight_lambda = 1e-5

training_dataset = tf.data.Dataset.from_tensor_slices(bops).batch(batch_size)

autoencoder = ae.Autoencoder(original_dim=original_dim,
                             code_dim=code_dim,
                             hidden_dim=hidden_dim,
                             weight_lambda=weight_lambda)
#opt = tf.optimizers.SGD(learning_rate=learning_rate, momentum=momentum)
opt = tf.optimizers.Adam(learning_rate=learning_rate)

with open("loss_%s" % input_filename, "w") as loss_file:
    real_step = 0
    for epoch in range(epochs):
        for step, batch_features in enumerate(training_dataset):
            ae.train(ae.loss, autoencoder, opt, batch_features)
            loss_value = ae.loss(autoencoder, batch_features)
            real_step += 1
            print("%d %f" % (real_step, loss_value), file=loss_file)

encoded_bops = autoencoder.encoder(tf.constant(bops))

# FIND THE GAUSSIAN MIXTURE MODEL THAT BEST APPROXIMATES THE DATA THROUGH A BIC CRITERIUM

from sklearn import mixture
import itertools

lowest_bic = np.infty
bic = []
n_components_range = range(1, 10)
for n_components in n_components_range:
Esempio n. 6
0
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()

# only get x inputs
training_data, test_data = np.array(list(training_data))[:, 0], np.array(
    list(test_data))[:, 0]
training_data, test_data = np.array(
    list(map(lambda x: np.squeeze(x), training_data))), np.array(
        list(map(lambda x: np.squeeze(x), test_data)))
print("processed data")

# [ 784, 400, L50, 400, 784]
autoencoder = autoencoder.Autoencoder([784, 400], [400, 784], 50)
print("finished building autoencoder")

autoencoder.train(training_data, test_data)
print("finished training!")
'''=
# Creates filename and prepares network properties(performance and parameters) for saving
# name follows naming scheme: inputsize_layer1size_layer2size_...outputsize 
file_name = str(net.sizes).replace("[","").replace("]","").replace(" ","").replace(",","_")+'.pkl'
new_net_properties = [net.performance, net.weights, net.biases, ]

Saves network properties (learned parameters and performance). 
If the shape had been previously trained, it will override previous saved file if 
new performance is better. If it is a new shape, it will save to a new file


try:
	with open('best_networks/{0}'.format(file_name), 'rb') as f:
		old_net_properties = pickle.load(f)
Esempio n. 7
0
import image_preprocessing as img
import numpy as np
import matplotlib.pyplot as plt
import autoencoder as A
X = img.blur_images(100)
Y = img.pre_process(100)
X = X / X.max()
Y = Y / Y.max()
ip = np.prod(np.array(X[0].shape))
print(X.shape)
print(Y.shape)

model = A.train(X, Y, ip, 1)

predictions = model.predict(X)
plt.imshow(predictions[0].reshape(100, 100), cmap='gray')
plt.show()