Esempio n. 1
0
def test_enhance_atoms():

    p_table = Get_periodic_table()

    #####
    mols = dmy.get_rndethane_mols(distance=True)
    atoms = GNR.make_atom_df(mols)
    structure_dict = GNR.make_struc_dict(atoms)
    BCAI.enhance_structure_dict(structure_dict)
    ###########

    BCAI.enhance_atoms(atoms, structure_dict)

    for i, idx in enumerate(atoms['atom_index'].values):

        molid = atoms['molecule_name'][i]
        mol = 0
        for ml_fnd in mols:
            if ml_fnd.molid == molid:
                mol = ml_fnd

        atid = atoms['atom_index'][i]
        assert p_table.index(atoms['typestr'][i]) == mol.types[atid]
        assert np.array_equal(atoms['conn'][i], mol.conn[atid])
        assert np.array_equal(atoms['distance'][i], mol.dist[atid])
Esempio n. 2
0
def get_BCAI_features(atoms, bonds, struc, targetflag='CCS', training=True):

	target = flag_to_target(targetflag)

	BCAI.enhance_structure_dict(structure_dict)
	BCAI.enhance_atoms(atoms, structure_dict)
	bonds = BCAI.enhance_bonds(bonds, structure_dict)

	triplets = BCAI.make_triplets(bonds["molecule_name"].unique(), structure_dict)

	atoms = pd.DataFrame(atoms)
	bonds = pd.DataFrame(bonds)
	triplets = pd.DataFrame(triplets)

	atoms.sort_values(['molecule_name','atom_index'],inplace=True)
	bonds.sort_values(['molecule_name','atom_index_0','atom_index_1'],inplace=True)
	triplets.sort_values(['molecule_name','atom_index_0','atom_index_1','atom_index_2'],inplace=True)

	embeddings, atoms, bonds, triplets = BCAI.add_embedding(atoms, bonds, triplets)
	bonds.dropna()
	atoms.dropna()
	means, stds = BCAI.get_scaling(bonds)
	bonds = BCAI.add_scaling(bonds, means, stds)

	Dset = BCAI.create_dataset(atoms, bonds, triplets, labeled = True, max_count = 10**10, mol_order=mol_order)

	if training:
		x, y, r, mol_order = save_split_dataset(Dset)
	else:
		x, y, r, mol_order = save_dataset(Dset)

	return Dset, atoms, bonds, struc, x, y, r
Esempio n. 3
0
def test_make_triplets():

    p_table = Get_periodic_table()

    #####
    mols = dmy.get_rndethane_mols(distance=True)

    atoms = GNR.make_atom_df(mols)
    structure_dict = GNR.make_struc_dict(atoms)
    BCAI.enhance_structure_dict(structure_dict)
    BCAI.enhance_atoms(atoms, structure_dict)

    bonds = GNR.make_bonds_df(mols)
    BCAI.enhance_bonds(bonds, structure_dict, flag='3JHH')
    ############

    triplets = BCAI.make_triplets(bonds["molecule_name"].unique(),
                                  structure_dict)
    assert len(triplets["molecule_name"].unique()) == len(mols)

    count = 0
    for mol in mols:
        for atom1, type1 in enumerate(mol.types):
            for atom2, type2 in enumerate(mol.types):
                if atom1 == atom2:
                    continue

                for atom3, type3 in enumerate(mol.types):

                    if atom3 in [atom1, atom2] or atom3 < atom2:
                        continue

                    if mol.conn[atom1][atom2] != 1 or mol.conn[atom1][
                            atom3] != 1:
                        continue

                    row = triplets.loc[(triplets.molecule_name == mol.molid)
                                       & (triplets.atom_index_0 == atom1)
                                       & (triplets.atom_index_1 == atom2)
                                       & (triplets.atom_index_2 == atom3)]

                    assert len(row.index) == 1

                    ba = mol.xyz[atom2] - mol.xyz[atom1]
                    bc = mol.xyz[atom3] - mol.xyz[atom1]

                    angle = np.sum(
                        ba * bc) / (np.linalg.norm(ba) * np.linalg.norm(bc))
                    angle = np.arccos(np.clip(angle, -1.0, 1.0))

                    assert angle == row.angle.values
                    count += 1

    assert count == len(triplets.index)
Esempio n. 4
0
def test_enhance_bonds():

    p_table = Get_periodic_table()

    #####
    mols = dmy.get_rndethane_mols(distance=True)

    atoms = GNR.make_atom_df(mols)
    structure_dict = GNR.make_struc_dict(atoms)
    BCAI.enhance_structure_dict(structure_dict)
    BCAI.enhance_atoms(atoms, structure_dict)

    bonds = GNR.make_bonds_df(mols)
    ############

    BCAI.enhance_bonds(bonds, structure_dict, flag='3JHH')

    for idx, bond in enumerate(bonds):
        molid = bonds['molecule_name'][idx]
        at1 = bonds['atom_index_0'][idx]
        at2 = bonds['atom_index_1'][idx]

        mol = 0
        for ml_fnd in mols:
            if ml_fnd.molid == molid:
                mol = ml_fnd

        assert mol.coupling_len[at1][at2] == int(bonds['type'][idx][0])
        assert mol.coupling[at1][at2] == bonds['scalar_coupling_constant'][idx]
        if bonds['labeled_type'][idx] == '3JHH':
            assert bonds['predict'][idx] == 1
        else:
            assert bonds['predict'][idx] == 0

    for mol in mols:
        for atom1, type1 in enumerate(mol.types):
            for atom2, type2 in enumerate(mol.types):

                if atom1 == atom2:
                    continue

                row = bonds.loc[(bonds['molecule_name'] == mol.molid)
                                & (bonds['atom_index_0'] == atom1)
                                & (bonds['atom_index_1'] == atom2)]

                cpl = row['scalar_coupling_constant'].values

                if type1 == 1 and type2 == 1 and mol.coupling_len[atom1][
                        atom2] == 3:
                    assert row.predict.values == 1
                    assert mol.coupling[atom1][atom2] == cpl[0]
Esempio n. 5
0
def test_get_scaling():

    #####
    mols = dmy.get_rndethane_mols(distance=True)

    atoms = GNR.make_atom_df(mols)
    structure_dict = GNR.make_struc_dict(atoms)
    BCAI.enhance_structure_dict(structure_dict)
    BCAI.enhance_atoms(atoms, structure_dict)

    bonds = GNR.make_bonds_df(mols)
    BCAI.enhance_bonds(bonds, structure_dict, flag='3JHH')

    #####

    means, stds = BCAI.get_scaling(bonds)
Esempio n. 6
0
def test_enhance_structure_dict():

    p_table = Get_periodic_table()
    #####
    mols = dmy.get_rndethane_mols(distance=True)
    atoms = GNR.make_atom_df(mols)
    structure_dict = GNR.make_struc_dict(atoms)
    #####

    BCAI.enhance_structure_dict(structure_dict)

    for mol in mols:
        assert structure_dict[mol.molid]['typesstr'] == [
            p_table[type] for type in mol.types
        ]
        assert np.array_equal(structure_dict[mol.molid]['positions'], mol.xyz)
        assert np.array_equal(structure_dict[mol.molid]['conn'], mol.conn)
        assert np.array_equal(structure_dict[mol.molid]['distances'], mol.dist)
Esempio n. 7
0
def test_add_embedding():

    p_table = Get_periodic_table()

    #####
    mols = dmy.get_rndethane_mols(distance=True)

    atoms = GNR.make_atom_df(mols)
    structure_dict = GNR.make_struc_dict(atoms)
    BCAI.enhance_structure_dict(structure_dict)
    BCAI.enhance_atoms(atoms, structure_dict)

    bonds = GNR.make_bonds_df(mols)
    BCAI.enhance_bonds(bonds, structure_dict, flag='3JHH')

    triplets = BCAI.make_triplets(bonds["molecule_name"].unique(),
                                  structure_dict)
    #####

    embeddings, atoms, bonds, triplets = BCAI.add_embedding(
        atoms, bonds, triplets)