def test_local_grid_searcher_categorical(): search_space = dict( a=Categorical('a', 7, ['hello', 2]), b=Categorical(12, 15), ) searcher = LocalGridSearcher(search_space=search_space) expected_config_1 = {'b': 12, 'a': 'a'} expected_config_2 = {'b': 15, 'a': 'a'} expected_config_3 = {'b': 12, 'a': 7} expected_config_4 = {'b': 15, 'a': 7} expected_config_5 = {'b': 12, 'a': ['hello', 2]} expected_config_6 = {'b': 15, 'a': ['hello', 2]} config1 = searcher.get_config() searcher.update(config1, reward=0.2) assert searcher.get_reward(config1) == 0.2 assert searcher.get_best_reward() == 0.2 assert searcher.get_best_config() == config1 config2 = searcher.get_config() config3 = searcher.get_config() config4 = searcher.get_config() searcher.update(config4, reward=0.1) assert searcher.get_reward(config4) == 0.1 assert searcher.get_best_reward() == 0.2 assert searcher.get_best_config() == config1 searcher.update(config4, reward=0.5) assert searcher.get_reward(config4) == 0.5 assert searcher.get_best_reward() == 0.5 assert searcher.get_best_config() == config4 config5 = searcher.get_config() config6 = searcher.get_config() assert expected_config_1 == config1 assert expected_config_2 == config2 assert expected_config_3 == config3 assert expected_config_4 == config4 assert expected_config_5 == config5 assert expected_config_6 == config6 assert len(searcher._results) == 2 try: searcher.get_config() except AssertionError: pass else: raise AssertionError( 'GridSearcher should error due to being out of configs')
def test_object_detection_estimator_transfer(): dataset = get_dataset('https://autogluon.s3.amazonaws.com/datasets/tiny_motorbike.zip') train_data, val_data, test_data = dataset.random_split(val_size=0.3, test_size=0.2, random_state=0) task = ObjectDetection({'num_trials': 1, 'epochs': 1, 'transfer': Categorical('yolo3_darknet53_coco', 'ssd_512_resnet50_v1_voc'), 'estimator': 'ssd', 'batch_size': 4}) detector = task.fit(train_data) assert task.fit_summary().get('valid_map', 0) > 0 test_result = detector.predict(test_data)
def test_search_space_dot_key(): search_space = {'model.name': Categorical('mxnet', 'pytorch')} def train_fn(args, reporter): assert args['model.name'] == 'mxnet' or args['model.name'] == 'pytorch' scheduler = LocalSequentialScheduler(train_fn, search_space=search_space, num_trials=2) scheduler.run() scheduler.join_jobs()
def test_local_searcher_pickle(self): search_space = {1: Categorical(1, 2), 2: Categorical(1, 2)} searcher = LocalSearcher(search_space=search_space) # Identical configs should have same pkl key, different configs should have different pkl keys config_1 = {1: 1, 2: 2} config_2 = {2: 2, 1: 1} config_diff = {1: 2, 2: 1} config_pkl_1 = searcher._pickle_config(config_1) config_pkl_2 = searcher._pickle_config(config_2) config_pkl_diff = searcher._pickle_config(config_diff) assert config_pkl_1 == config_pkl_2 assert config_pkl_1 != config_pkl_diff config_unpkl = searcher._unpickle_config(config_pkl_1) config_unpkl_diff = searcher._unpickle_config(config_pkl_diff) assert config_unpkl == config_1 assert config_unpkl == config_2 assert config_unpkl_diff == config_diff
def test_local_random_searcher(): search_space = dict( a=Real(0, 1, default=0.2), b=Real(0.05, 1, default=0.4, log=True), c=Int(5, 15), d=Int(7, 23, default=16), e=Categorical('a', 7, ['hello', 2]), ) searcher = LocalRandomSearcher(search_space=search_space) expected_config_1 = {'a': 0.2, 'b': 0.4, 'c': 5, 'd': 16, 'e': 'a'} expected_config_2 = {'a': 0.5488135039273248, 'b': 0.4260424000595025, 'c': 8, 'd': 10, 'e': 7} expected_config_3 = {'a': 0.6235636967859723, 'b': 0.15814742875130683, 'c': 12, 'd': 13, 'e': 'a'} expected_config_4 = {'a': 0.9636627605010293, 'b': 0.1577026248478398, 'c': 11, 'd': 14, 'e': ['hello', 2]} expected_config_5 = {'a': 0.5680445610939323, 'b': 0.800200824711684, 'c': 13, 'd': 16, 'e': 'a'} assert searcher.get_best_reward() == float("-inf") config1 = searcher.get_config() assert searcher.get_reward(config1) == float("-inf") assert searcher.get_best_reward() == float("-inf") searcher.update(config1, accuracy=0.2) assert searcher.get_reward(config1) == 0.2 assert searcher.get_best_reward() == 0.2 assert searcher.get_best_config() == config1 config2 = searcher.get_config() config3 = searcher.get_config() config4 = searcher.get_config() searcher.update(config4, accuracy=0.1) assert searcher.get_reward(config4) == 0.1 assert searcher.get_best_reward() == 0.2 assert searcher.get_best_config() == config1 searcher.update(config4, accuracy=0.5) assert searcher.get_reward(config4) == 0.5 assert searcher.get_best_reward() == 0.5 assert searcher.get_best_config() == config4 config5 = searcher.get_config() assert expected_config_1 == config1 assert expected_config_2 == config2 assert expected_config_3 == config3 assert expected_config_4 == config4 assert expected_config_5 == config5 assert len(searcher._results) == 5
def test_search_space(): search_space = dict( a=Real(1e-3, 1e-2, log=True), b=Real(1e-3, 1e-2), c=Int(1, 10), d=Categorical('a', 'b', 'c', 'd'), ) def train_fn(args, reporter): a, b, c, d = args['a'], args['b'], args['c'], args['d'] assert 1e-2 >= a >= 1e-3 assert 1e-2 >= b >= 1e-3 assert 10 >= c >= 1 assert d in ['a', 'b', 'c', 'd'] reporter(epoch=1, reward=0) scheduler = LocalSequentialScheduler(train_fn, search_space=search_space, num_trials=10, time_attr='epoch') scheduler.run() scheduler.join_jobs()
def fit(dataset='voc', net=Categorical('mobilenet1.0'), meta_arch='yolo3', lr=Categorical(5e-4, 1e-4), loss=gluon.loss.SoftmaxCrossEntropyLoss(), split_ratio=0.8, batch_size=16, epochs=50, num_trials=None, time_limits=None, nthreads_per_trial=12, num_workers=32, ngpus_per_trial=1, hybridize=True, scheduler_options=None, search_strategy='random', search_options=None, verbose=False, transfer='coco', resume='', checkpoint='checkpoint/exp1.ag', visualizer='none', dist_ip_addrs=None, auto_search=True, seed=223, data_shape=416, start_epoch=0, lr_mode='step', lr_decay=0.1, lr_decay_period=0, lr_decay_epoch='160,180', warmup_lr=0.0, warmup_epochs=2, warmup_iters=1000, warmup_factor=1. / 3., momentum=0.9, wd=0.0005, log_interval=100, save_prefix='', save_interval=10, val_interval=1, num_samples=-1, no_random_shape=False, no_wd=False, mixup=False, no_mixup_epochs=20, label_smooth=False, syncbn=False, reuse_pred_weights=True, **kwargs): """ Fit object detection models. Parameters ---------- dataset : str or :class:`autogluon.task.ObjectDectection.Dataset` Training dataset containing images and corresponding object bounding boxes. net : str, :class:`autogluon.space.AutoGluonObject` Which existing neural network base models to consider as candidates. meta_arch : str Meta architecture of the model. Currently support YoloV3 (Default) and FasterRCNN. YoloV3 is faster, while FasterRCNN is more accurate. lr : float or :class:`autogluon.space` The learning rate to use in each update of the neural network weights during training. loss : mxnet.gluon.loss Loss function used during training of the neural network weights. split_ratio : float Fraction of dataset to hold-out during training in order to tune hyperparameters (i.e. validation data). The final returned model may be fit to all of the data (after hyperparameters have been selected). batch_size : int How many images to group in each mini-batch during gradient computations in training. epochs : int How many epochs to train the neural networks for at most. num_trials : int Maximal number of hyperparameter configurations to try out. time_limits : int Approximately how long should `fit()` should run for (wallclock time in seconds). `fit()` will stop training new models after this amount of time has elapsed (but models which have already started training will continue to completion). nthreads_per_trial : int How many CPUs to use in each trial (ie. single training run of a model). num_workers : int How many CPUs to use for data loading during training of a model. ngpus_per_trial : int How many GPUs to use in each trial (ie. single training run of a model). hybridize : bool Whether or not the MXNet neural network should be hybridized (for increased efficiency). scheduler_options : dict Extra arguments passed to __init__ of scheduler, to configure the orchestration of training jobs during hyperparameter-tuning. search_strategy : str Which hyperparameter search algorithm to use. Options include: 'random' (random search), 'skopt' (SKopt Bayesian optimization), 'grid' (grid search), 'hyperband' (Hyperband random), 'rl' (reinforcement learner). search_options : dict Auxiliary keyword arguments to pass to the searcher that performs hyperparameter optimization. verbose : bool Whether or not to print out intermediate information during training. resume : str Path to checkpoint file of existing model, from which model training should resume. If not empty, we also start the hyperparameter search from the state loaded from checkpoint. checkpoint : str or None State of hyperparameter search is stored to this local file visualizer : str Describes method to visualize training progress during `fit()`. Options: ['mxboard', 'tensorboard', 'none']. dist_ip_addrs : list List of IP addresses corresponding to remote workers, in order to leverage distributed computation. auto_search : bool If True, enables automatic suggestion of network types and hyper-parameter ranges adaptively based on provided dataset. seed : int Random seed to set for reproducibility. data_shape : int Shape of the image data. start_epoch : int Which epoch we begin training from (eg. if we resume training of an existing model, then this argument may be set to the number of epochs the model has already been trained for previously). lr_mode : str What sort of learning rate schedule should be followed during training. lr_decay : float How much learning rate should be decayed during training. lr_decay_period : int How often learning rate should be decayed during training. warmup_lr : float Learning rate to use during warm up period at the start of training. warmup_epochs : int How many initial epochs constitute the "warm up" period of model training. warmup_iters : int How many initial iterations constitute the "warm up" period of model training. This is used by R-CNNs warmup_factor : float warmup factor of target lr. initial lr starts from target lr * warmup_factor momentum : float or :class:`autogluon.space` Momentum to use in optimization of neural network weights during training. wd : float or :class:`autogluon.space` Weight decay to use in optimization of neural network weights during training. log_interval : int Log results every so many epochs during training. save_prefix : str Prefix to append to file name for saved model. save_interval : int Save a copy of model every so many epochs during training. val_interval : int Evaluate performance on held-out validation data every so many epochs during training. no_random_shape : bool Whether random shapes should not be used. no_wd : bool Whether weight decay should be turned off. mixup : bool Whether or not to utilize mixup data augmentation strategy. no_mixup_epochs : int If using mixup, we first train model for this many epochs without mixup data augmentation. label_smooth : bool Whether or not to utilize label smoothing. syncbn : bool Whether or not to utilize synchronized batch normalization. Returns ------- :class:`autogluon.task.object_detection.Detector` object which can make predictions on new data and summarize what happened during `fit()`. Examples -------- >>> from autogluon.vision.object_detection import ObjectDetection as task >>> detector = task.fit(dataset = 'voc', net = 'mobilenet1.0', >>> time_limits = 600, ngpus_per_trial = 1, num_trials = 1) """ assert search_strategy not in {'bayesopt', 'bayesopt_hyperband'}, \ "search_strategy == 'bayesopt' or 'bayesopt_hyperband' not yet supported" if auto_search: # The strategies can be injected here, for example: automatic suggest some hps # based on the dataset statistics pass nthreads_per_trial = get_cpu_count( ) if nthreads_per_trial > get_cpu_count() else nthreads_per_trial if ngpus_per_trial > get_gpu_count(): logger.warning( "The number of requested GPUs is greater than the number of available GPUs." ) ngpus_per_trial = get_gpu_count( ) if ngpus_per_trial > get_gpu_count() else ngpus_per_trial # If only time_limits is given, the scheduler starts trials until the # time limit is reached if num_trials is None and time_limits is None: num_trials = 2 train_object_detection.register_args( meta_arch=meta_arch, dataset=dataset, net=net, lr=lr, loss=loss, num_gpus=ngpus_per_trial, batch_size=batch_size, split_ratio=split_ratio, epochs=epochs, num_workers=nthreads_per_trial, hybridize=hybridize, verbose=verbose, final_fit=False, seed=seed, data_shape=data_shape, start_epoch=0, transfer=transfer, lr_mode=lr_mode, lr_decay=lr_decay, lr_decay_period=lr_decay_period, lr_decay_epoch=lr_decay_epoch, warmup_lr=warmup_lr, warmup_epochs=warmup_epochs, warmup_iters=warmup_iters, warmup_factor=warmup_factor, momentum=momentum, wd=wd, log_interval=log_interval, save_prefix=save_prefix, save_interval=save_interval, val_interval=val_interval, num_samples=num_samples, no_random_shape=no_random_shape, no_wd=no_wd, mixup=mixup, no_mixup_epochs=no_mixup_epochs, label_smooth=label_smooth, resume=resume, syncbn=syncbn, reuse_pred_weights=reuse_pred_weights) # Backward compatibility: grace_period = kwargs.get('grace_period') if grace_period is not None: if scheduler_options is None: scheduler_options = {'grace_period': grace_period} else: assert 'grace_period' not in scheduler_options, \ "grace_period appears both in scheduler_options and as direct argument" scheduler_options = copy.copy(scheduler_options) scheduler_options['grace_period'] = grace_period logger.warning("grace_period is deprecated, use " "scheduler_options={'grace_period': ...} instead") scheduler_options = compile_scheduler_options( scheduler_options=scheduler_options, search_strategy=search_strategy, search_options=search_options, nthreads_per_trial=nthreads_per_trial, ngpus_per_trial=ngpus_per_trial, checkpoint=checkpoint, num_trials=num_trials, time_out=time_limits, resume=(len(resume) > 0), visualizer=visualizer, time_attr='epoch', reward_attr='map_reward', dist_ip_addrs=dist_ip_addrs, epochs=epochs) results = BaseTask.run_fit(train_object_detection, search_strategy, scheduler_options) logger.info(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> finish model fitting") args = sample_config(train_object_detection.args, results['best_config']) logger.info('The best config: {}'.format(results['best_config'])) ngpus = get_gpu_count() ctx = [mx.gpu(i) for i in range(ngpus)] if ngpus > 0 else [mx.cpu()] model = get_network(args.meta_arch, args.net, dataset.init().get_classes(), transfer, ctx, syncbn=args.syncbn) update_params(model, results.pop('model_params')) return Detector(model, results, checkpoint, args)
def test_local_searcher(self): search_space = {'param1': Categorical('hello', 'world'), 7: 42} searcher = LocalSearcher(search_space=search_space) config1 = {'param1': 'hello', 7: 42} config2 = {'param1': 'world', 7: 42} config_edge_case_1 = {'param1': 'world', 7: 0} config_invalid_2 = {'param1': 'invalid', 7: 42} config_invalid_3 = {'param1': 'hello'} config_invalid_4 = {7: 42} config_invalid_5 = {} config_invalid_6 = {'param1': 'hello', 7: 42, 'unknown_param': 7} config_invalid_7 = 0 assert searcher.get_best_reward() == float("-inf") searcher.update(config1, reward=0.2) assert searcher.get_best_reward() == 0.2 assert searcher.get_best_config() == config1 assert searcher.get_results() == [({'param1': 'hello', 7: 42}, 0.2)] searcher.update(config1, reward=0.1) assert searcher.get_best_reward() == 0.1 assert searcher.get_best_config() == config1 assert searcher.get_results() == [({'param1': 'hello', 7: 42}, 0.1)] searcher.update(config2, reward=0.7) assert searcher.get_best_reward() == 0.7 assert searcher.get_best_config() == config2 assert searcher.get_results() == [({ 'param1': 'world', 7: 42 }, 0.7), ({ 'param1': 'hello', 7: 42 }, 0.1)] assert len(searcher._results) == 2 # This config is technically invalid, but for performance reasons is allowed to avoid having to pickle compare static parameters. # Since the static parameter should be fixed, this config is treated as being equivalent to config2 searcher.update(config_edge_case_1, reward=0) assert searcher.get_best_reward() == 0.1 assert len(searcher._results) == 2 self.assertRaises(AssertionError, searcher.update, config_invalid_2, reward=0) self.assertRaises(AssertionError, searcher.update, config_invalid_3, reward=0) self.assertRaises(AssertionError, searcher.update, config_invalid_4, reward=0) self.assertRaises(AssertionError, searcher.update, config_invalid_5, reward=0) self.assertRaises(AssertionError, searcher.update, config_invalid_6, reward=0) self.assertRaises(AssertionError, searcher.update, config_invalid_7, reward=0) self.assertRaises(AssertionError, searcher.update, config1, reward='invalid_reward') assert len(searcher._results) == 2 assert searcher.get_results() == [({ 'param1': 'hello', 7: 42 }, 0.1), ({ 'param1': 'world', 7: 42 }, 0)]
def kwspaces(self): return Categorical(*list(range(len(self.module_list))))
import pytest from autogluon.core.hpo.space_converter import RaySpaceConverterFactory from autogluon.core.space import Space, Categorical, Real, Int, Bool from ray import tune @pytest.mark.parametrize('space, expected_space', [ (Categorical([1, 2]), tune.choice([1, 2])), (Real(1, 2, log=True), tune.loguniform(1, 2)), (Real(1, 2, log=False), tune.uniform(1, 2)), (Int(1, 2), tune.randint(1, 3)), (Bool(), tune.randint(0, 2)), ]) def test_space_converter(space, expected_space): ray_space = RaySpaceConverterFactory.get_space_converter( space.__class__.__name__).convert(space) assert type(ray_space) == type(expected_space)