def __init__( self, dm: Discrete(min=0, max=2), dbow_words: Discrete(min=-100, max=100), dm_concat: Discrete(min=-100, max=100), dm_tag_count: Discrete(min=0, max=2), alpha: Continuous(min=0.001, max=0.075), epochs: Discrete(min=2, max=10), window: Discrete(min=2, max=10), inner_tokenizer: algorithm(Sentence(), List(Word())), inner_stemmer: algorithm(Word(), Stem()), inner_stopwords: algorithm(List(Word()), List(Word())), lowercase: Boolean(), stopwords_remove: Boolean(), ): self.inner_tokenizer = inner_tokenizer self.inner_stemmer = inner_stemmer self.inner_stopwords = inner_stopwords self.lowercase = lowercase self.stopwords_remove = stopwords_remove super().__init__( dm=dm, dbow_words=dbow_words, dm_concat=dm_concat, dm_tag_count=dm_tag_count, alpha=alpha, epochs=epochs, window=window, )
def __init__(self, Trained: Boolean(), N: Discrete(min=500, max=2000), C: Boolean()): self.Trained = Trained self.N = N self.C = C NltkTrainedTagger.__init__(self) _TnT.__init__(self, Trained=Trained, N=N, C=C)
def __init__(self, preserve_case: Boolean(), reduce_len: Boolean(), strip_handles: Boolean()): self.preserve_case = preserve_case self.reduce_len = reduce_len self.strip_handles = strip_handles NltkTokenizer.__init__(self) _TweetTokenizer.__init__( self, preserve_case=preserve_case, reduce_len=reduce_len, strip_handles=strip_handles, )
def __init__( self, lowercase: Boolean(), stopwords_remove: Boolean(), binary: Boolean(), inner_tokenizer: algorithm(Sentence(), List(Word())), inner_stemmer: algorithm(Word(), Stem()), inner_stopwords: algorithm(List(Word()), List(Word())), ): self.stopwords_remove = stopwords_remove self.inner_tokenizer = inner_tokenizer self.inner_stemmer = inner_stemmer self.inner_stopwords = inner_stopwords SklearnTransformer.__init__(self) _CountVectorizer.__init__(self, lowercase=lowercase, binary=binary)
def __init__( self, tokenizer: algorithm(Sentence(), List(Word())), feature_extractor: algorithm(Word(), Flags()), include_text: Boolean(), ): self.tokenizer = tokenizer self.feature_extractor = feature_extractor self.include_text = include_text
def _get_arg_values(arg, value, cls): if isinstance(value, bool): return Boolean() if isinstance(value, int): return Discrete(*_get_integer_values(arg, value, cls)) if isinstance(value, float): return Continuous(*_get_float_values(arg, value, cls)) if isinstance(value, str): values = _find_parameter_values(arg, cls) return Categorical(*values) if values else None return None
def __init__( self, featurewise_center: Boolean(), samplewise_center: Boolean(), featurewise_std_normalization: Boolean(), samplewise_std_normalization: Boolean(), rotation_range: Discrete(0, 15), width_shift_range: Continuous(0, 0.25), height_shift_range: Continuous(0, 0.25), shear_range: Continuous(0, 15), zoom_range: Continuous(0, 0.25), horizontal_flip: Boolean(), vertical_flip: Boolean(), ): super().__init__( featurewise_center=featurewise_center, samplewise_center=samplewise_center, featurewise_std_normalization=featurewise_std_normalization, samplewise_std_normalization=samplewise_std_normalization, rotation_range=rotation_range, width_shift_range=width_shift_range, height_shift_range=height_shift_range, shear_range=shear_range, zoom_range=zoom_range, horizontal_flip=horizontal_flip, vertical_flip=vertical_flip, )
def _get_arg_values(arg, value, cls): print(f"Computing valid values for: {arg}={value}") try: if isinstance(value, bool): annotation = Boolean() elif isinstance(value, int): annotation = _get_integer_values(arg, value, cls) elif isinstance(value, float): annotation = _get_float_values(arg, value, cls) elif isinstance(value, str): annotation = _find_parameter_values(arg, cls) else: annotation = None except: annotation = None print(f"Found annotation {arg}:{annotation}") return annotation
def __init__( self, language: Categorical("en", "es"), extract_pos: Boolean(), extract_lemma: Boolean(), extract_pos_tag: Boolean(), extract_dep: Boolean(), extract_entity: Boolean(), extract_details: Boolean(), extract_sentiment: Boolean(), ): self.language = language self.extract_pos = extract_pos self.extract_lemma = extract_lemma self.extract_pos_tag = extract_pos_tag self.extract_dep = extract_dep self.extract_entity = extract_entity self.extract_details = extract_details self.extract_sentiment = extract_sentiment self._nlp = None
def __init__(self, strip_prefix_flag: Boolean()): self.strip_prefix_flag = strip_prefix_flag NltkStemmer.__init__(self) _LancasterStemmer.__init__(self, strip_prefix_flag=strip_prefix_flag)
def __init__(self, strict: Boolean()): self.strict = strict NltkTokenizer.__init__(self) _SExprTokenizer.__init__(self, strict=strict)
def __init__(self, case_insensitive: Boolean()): self.case_insensitive = case_insensitive NltkStemmer.__init__(self) _Cistem.__init__(self, case_insensitive=case_insensitive)
def __init__(self, ngram: Discrete(1, 3), use_idf: Boolean()): super().__init__(ngram_range=(1, ngram), use_idf=use_idf) self.ngram = ngram