Esempio n. 1
0
    def cost(self, x):

        u = self.forward(x)
        diff = (self.obs - u)
        negative_log_likelihood = 0.5 * np.dot(
            np.dot(diff, self.Gamma_noise_inv), diff)

        controls = self.unflatten(x)
        penalty_controls = 0. * np.sum(
            np.mean(ewm(
                1.,
                np.power(
                    np.abs(np.diff(controls[0], axis=0)) -
                    np.diff(controls[0], axis=0), 1.)),
                    axis=0))
        penalty_controls += np.sum(
            np.mean(ewm(1., np.power(np.abs(np.diff(controls[0], axis=0)),
                                     1.)),
                    axis=0))

        # # # penalization on HFR, beta, delta, kappa, sigma, eta_I, eta_Q, mu, gamma_I, gamma_A, gamma_H, gamma_Q from mean
        # result = 0.
        # for j in range(0, len(parameters)):
        #     result = result + 0.5/500 * np.sum(np.power(np.divide(np.abs(controls[j+1] - parameters[j]), parameters[j]/2), 1))
        #
        # penalty_controls += result

        print("cost, penalty = ", negative_log_likelihood,
              10. * penalty_controls)

        return negative_log_likelihood + 10. * penalty_controls
Esempio n. 2
0
def penalization(controls, coeffs, kappas):

    result = 0.
    # # penalization on alpha, q, tau from decreasing
    # increasing = [0.01, 1., 1.]
    # for i in range(1):
    #     result = result + increasing[i]*np.sum(np.mean(ewm(coeffs[i][1:], np.power(np.abs(np.diff(controls[i], axis=0))-np.diff(controls[i], axis=0), 1.)), axis=0))
    result = np.sum(np.mean(ewm(coeffs[0][1:], np.power(np.abs(np.diff(controls[0], axis=0))-np.diff(controls[0], axis=0), 1.)), axis=0))
    # result = result + 1.*np.sum(np.mean(ewm(coeffs[3][1:], np.power(np.abs(np.diff(controls[3], axis=0))+np.diff(controls[3], axis=0), 1.)), axis=0))

    # # # penalization on HFR, beta, delta, kappa, sigma, eta_I, eta_Q, mu, gamma_I, gamma_A, gamma_H, gamma_Q from mean
    # for j in range(2, len(parameters)):
    #     result = result + 0.5/500 * np.sum(np.power(np.divide(controls[j+3] - parameters[j], parameters[j]/2), 2))

    return result
Esempio n. 3
0
    # # data from China, https://science.sciencemag.org/content/sci/suppl/2020/03/13/science.abb3221.DC1/abb3221_Li_SM_rev.pdf
    # theta = 0.5

    # # data from EU https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-04-23-COVID19-Report-16.pdf
    # theta = 0.1   # a big range investigated from 0 - 1

    # ratio of pre-isolation infectious period, only in action if quarantine is used
    # data from EU, https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-04-23-COVID19-Report-16.pdf
    delta = 0.5

    # #### initial seeding and simulation time step
    # proportion of each age and risk group
    population_proportion = 1.

    # # susceptible population in each age and risk group
    S = np.array([ewm(N_total, population_proportion)])

    # exposed at the beginning
    E = np.array([100.])
    # S, E, Q, A, I, H, R, D, Tc, Tu # Tc/Tu is the total reported/unreported positive cases
    zeros = np.zeros(1)
    # Tc = np.ones(1) * data_confirmed[0]
    y0 = np.array([S, E, zeros, zeros, zeros, zeros, zeros, zeros, zeros, zeros]).flatten("C")

    # # set data from solution to fitted death data
    # data = np.load("data/find_initial.npz")
    # solution_opt = data["solution_opt"]
    # today = data["today"]
    # y0 = solution_opt[today, :]

    # #### control variable for social distancing, isolution, and quarantine, in [0, 1], 0 means no control, 1 full control
Esempio n. 4
0
    def seir(self, y, t, parameters, controls, stochastic=False):
        # define the right hand side of the ode systems given state y, time t, parameters, and controls

        if self.number_group > 1:
            y = y.reshape((10, self.number_group))

        S, E, Q, A, I, H, R, D, Tc, Tu = y

        q, tau, HFR, kappa, beta, delta, sigma, eta_I, eta_Q, mu, gamma_I, gamma_A, gamma_H, gamma_Q = parameters
        # _, _, _, delta, sigma, eta_I, eta_Q, mu, gamma_I, gamma_A, gamma_H, gamma_Q = parameters
        alpha, = controls
        alpha = (np.tanh(alpha) + 1) / 2

        alpha = self.interpolation(t, self.t_control, alpha)

        # alpha, q, tau, HFR, kappa = [self.interpolation(t, self.t_control, controls[i]) for i in range(self.number_time_dependent_controls)]

        # tau_p = self.interpolation(t - np.max(1./sigma), self.t_control, controls[2])
        # tau_p = self.interpolation(t, self.t_control, controls[2])
        # tau_p = tau

        # IHR = np.divide(kappa, np.max(kappa) + tau_p)

        IHR = kappa

        QHR = ewm(tau, IHR)

        # gamma_A = gamma_I

        pi = self.proportion2factor(IHR, eta_I, gamma_I)
        nu = self.proportion2factor(HFR, mu, gamma_H)
        rho = self.proportion2factor(QHR, eta_Q, gamma_Q)

        contact = self.contact_rate(t)

        # theta_I = 2 - tau
        # theta_A = 1 - tau

        theta_I = 1. - 0 * tau
        theta_A = 1. - 0 * tau
        delta = 1. + 0 * delta

        C_E = ewm(
            1 - alpha,
            ewm(
                1 - q,
                ewm(delta,
                    np.dot(contact, ewm(theta_I, np.divide(I, self.N_total)))))
            + np.dot(contact, ewm(theta_A, np.divide(A, self.N_total))))

        C_Q = ewm(
            1 - alpha,
            ewm(
                q,
                ewm(delta,
                    np.dot(contact, ewm(theta_I, np.divide(I,
                                                           self.N_total))))))

        if stochastic:
            zeros = np.zeros(np.size(S))
            S = np.max([zeros, S], axis=0)
            E = np.max([zeros, E], axis=0)
            Q = np.max([zeros, Q], axis=0)
            A = np.max([zeros, A], axis=0)
            I = np.max([zeros, I], axis=0)
            H = np.max([zeros, H], axis=0)

        P1 = ewm(beta, ewm(C_E, S))
        P2 = ewm(beta, ewm(C_Q, S))
        P3 = ewm(tau, ewm(sigma, E))
        P4 = ewm(1 - tau, ewm(sigma, E))
        P5 = ewm(rho, ewm(eta_Q, Q))
        P6 = ewm(1 - rho, ewm(gamma_Q, Q))
        P7 = ewm(gamma_A, A)
        P8 = ewm(pi, ewm(eta_I, I))
        P9 = ewm(1 - pi, ewm(gamma_I, I))
        P10 = ewm(nu, ewm(mu, H))
        P11 = ewm(1 - nu, ewm(gamma_H, H))

        if stochastic:
            P1 = np.random.poisson(P1)
            P2 = np.random.poisson(P2)
            P3 = np.random.poisson(P3)
            P4 = np.random.poisson(P4)
            P5 = np.random.poisson(P5)
            P6 = np.random.poisson(P6)
            P7 = np.random.poisson(P7)
            P8 = np.random.poisson(P8)
            P9 = np.random.poisson(P9)
            P10 = np.random.poisson(P10)
            P11 = np.random.poisson(P11)

        dS = -P1 - P2
        dE = P1 - P3 - P4
        dQ = P2 - P5 - P6
        dA = P4 - P7
        dI = P3 - P8 - P9
        dH = P8 + P5 - P10 - P11
        dR = P7 + P9 + P11 + P6
        dD = P10
        dTc = P3 + P2  # + quarantined, P2
        dTu = P4
        dydt = np.array([dS, dE, dQ, dA, dI, dH, dR, dD, dTc,
                         dTu]).flatten("C")

        return dydt
Esempio n. 5
0
    def proportion2factor(self, proportion, r1, r2):
        # define a function to transform proportion to factor, e.g., from prop_EI to tau with r1=sigma_I, r2 = sigma_A
        factor = np.divide(ewm(r2, proportion), r1 + ewm(r2 - r1, proportion))

        return factor
Esempio n. 6
0
    def reproduction(self, t, parameters, controls, solution):
        # effective reproduction number at time t
        # https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2009.0386
        # The construction of next-generation matrices for compartmental epidemic models

        t_set = t
        number_time = len(t)
        if number_time == 1:
            t_set = [t]

        Rt = np.zeros(number_time)
        for n_t in range(number_time):
            t = t_set[n_t]

            q, tau, HFR, kappa, beta, delta, sigma, eta_I, eta_Q, mu, gamma_I, gamma_A, gamma_H, gamma_Q = parameters
            # alpha, q, tau, HFR, kappa, beta, delta, sigma, eta_I, eta_Q, mu, gamma_I, gamma_A, gamma_H, gamma_Q = controls
            # alpha, q, tau, HFR, kappa, beta, _, _, _, _, _, _, _, _, _ = controls

            alpha = self.interpolation(t, self.t_control, controls)

            # tau_p = self.interpolation(t - np.max(1./sigma), self.t_control, controls[2])
            # tau_p = self.interpolation(t, self.t_control, controls[2])

            # IHR = np.divide(kappa, np.max(kappa) + tau_p)

            IHR = kappa

            QHR = ewm(tau, IHR)

            pi = self.proportion2factor(IHR, eta_I, gamma_I)

            # transform the parameter in the vector format
            ones = np.ones(self.number_group)

            alpha, q, tau, pi, beta, delta, kappa, sigma, eta_I, eta_Q, mu, gamma_I, gamma_A, gamma_H, gamma_Q = \
            ewm(alpha,ones), ewm(q,ones), ewm(tau,ones), ewm(pi,ones), ewm(beta,ones), ewm(delta,ones), ewm(kappa,ones), \
            ewm(sigma,ones), ewm(eta_I,ones), ewm(eta_Q,ones), ewm(mu,ones), ewm(gamma_I,ones), ewm(gamma_A,ones), ewm(gamma_H,ones), ewm(gamma_Q,ones)

            # theta_I = 2 - tau
            # theta_A = 1 - tau

            theta_I = 1. - 0 * tau
            theta_A = 1. - 0 * tau
            delta = 1. + 0 * delta

            S = solution[n_t, :self.number_group]

            zeros = np.zeros((self.number_group, self.number_group))
            ItoS = np.diag(beta) * np.diag(1.-alpha) * np.diag(1.-q) * np.diag(delta) * np.dot(self.contact_rate(t), np.diag(theta_I)) * np.diag(np.divide(S, self.N_total))
            AtoS = np.diag(beta) * np.diag(1.-alpha) * np.dot(self.contact_rate(t), np.diag(theta_A)) * np.diag(np.divide(S, self.N_total))
            T = np.block([
                [zeros, AtoS, ItoS],
                [zeros, zeros, zeros],
                [zeros, zeros, zeros]
            ])

            Sigma = np.block([
                [-np.diag(sigma), zeros, zeros],
                [np.diag(1.-tau)*np.diag(sigma), -np.diag(gamma_A), zeros],
                [np.diag(tau)*np.diag(sigma), zeros, -np.diag(pi)*np.diag(eta_I)-np.diag(1.-pi)*np.diag(gamma_I)]
            ])

            w, _ = np.linalg.eig(-np.dot(T, np.linalg.inv(Sigma)))

            Rt[n_t] = np.max(w)

        return Rt
Esempio n. 7
0
    # # data from China, https://science.sciencemag.org/content/sci/suppl/2020/03/13/science.abb3221.DC1/abb3221_Li_SM_rev.pdf
    # theta = 0.5

    # # data from EU https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-04-23-COVID19-Report-16.pdf
    # theta = 0.1   # a big range investigated from 0 - 1

    # ratio of pre-isolation infectious period, only in action if quarantine is used
    # data from EU, https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-04-23-COVID19-Report-16.pdf
    delta = 0.5

    # #### initial seeding and simulation time step
    # proportion of each age and risk group
    population_proportion = 1.

    # # susceptible population in each age and risk group
    S = np.array([ewm(N_total, population_proportion)])

    # exposed at the beginning
    E = np.array([100.])
    # S, E, Q, A, I, H, R, D, Tc, Tu # Tc/Tu is the total reported/unreported positive cases
    zeros = np.zeros(1)
    # Tc = np.ones(1) * data_confirmed[0]
    y0 = np.array(
        [S, E, zeros, zeros, zeros, zeros, zeros, zeros, zeros,
         zeros]).flatten("C")

    # # set data from solution to fitted death data
    # data = np.load("data/find_initial.npz")
    # solution_opt = data["solution_opt"]
    # today = data["today"]
    # y0 = solution_opt[today, :]