def logdotexp(logA, logB):
    """
        Given the log of two matrices A and B as logA and logB, carries out A * B in log space
    """
    maxA = np.max(logA)
    maxB = np.max(logB)
    if np.abs(maxA) == np.Inf:
        sortA = np.sort(logA.reshape(-1))
        if np.sum(np.abs(sortA) != np.Inf) == 0:
            C = np.zeros([logA.shape[0], logB.shape[1]],
                         dtype='complex128') - np.Inf
            return C
        else:
            maxA = sortA[np.sum(np.abs(sortA) != np.Inf) - 1]

    if np.abs(maxB) == np.Inf:
        sortB = np.sort(logB.reshape(-1))
        if np.sum(np.abs(sortB) != np.Inf) == 0:
            C = np.zeros([logA.shape[0], logB.shape[1]],
                         dtype='complex128') - np.Inf
            return C
        else:
            maxB = sortB[np.sum(np.abs(sortB) != np.Inf)]

    expA = np.exp(logA - maxA)
    expB = np.exp(logB - maxB)

    C = np.log(np.dot(expA, expB)) + maxA + maxB

    return C
Esempio n. 2
0
def G4(positions, cell, numbers, elements, params):
    cutoff_radius = params['cutoff_radius']
    eta = params['eta']
    zeta = params['zeta']
    lbda = params['lbda']
    cos, Rij, Rik, Rjk, i, jk = atomsAngle(positions, cell, cutoff_radius)
    g4 = (1 + lbda * cos)**zeta * np.exp(
        -eta * (Rij**2 + Rik**2 + Rjk**2) / cutoff_radius**2)
    g4 = g4 * cutoff(cutoff_radius, Rij) * cutoff(cutoff_radius, Rik) * cutoff(
        cutoff_radius, Rjk)
    g4 *= 2**(1 - zeta)
    atoms_mask = np.arange(len(positions))[:, None] == i[None, :]

    # the shape of g4 will become (#atoms, len(g4)) and multiply atoms_mask to get the corresponding center atom's fingerprints
    g4 = np.repeat(g4[None, :], len(positions), axis=0)
    g4 *= atoms_mask

    index = np.indices((len(elements), len(elements))).reshape(2, -1)
    mask = index[1] >= index[0]
    index = index[:, mask].T
    pairs = np.repeat(np.sort(numbers[jk])[:, None], len(index), axis=1)
    elements = np.sort(elements)[index]

    pairs_mask = np.sum(pairs == elements, axis=2)
    pairs_mask = np.where(pairs_mask == 2, 1, 0)

    g4 = np.dot(g4, pairs_mask)

    return g4
Esempio n. 3
0
    def mle_batch_euclidean(self, data, k):
        """
        Calculates LID values of data w.r.t batch
        Args:
            data: samples to calculate LIDs of
            batch: samples to calculate LIDs against
            k: the number of nearest neighbors to consider

        Returns: the calculated LID values

        """
        batch = self.training_data_ndarray
        f = lambda v: -k / np.sum(np.log((v / v[-1]) + 1e-9))
        gamma = self.classifier.kernel.gamma
        if gamma is None:
            gamma = 1.0 / self.training_data_ndarray.shape[1]
        K = rbf_kernel(data, Y=batch, gamma=gamma)
        K = np.reciprocal(K)
        # K = cdist(data, batch)
        # get the closest k neighbours
        if self.xc is not None and self.xc.shape[0] == 1:
            # only one attack sample
            sorted_distances = np.sort(K)[0, 1:1 + k]
        else:
            sorted_distances = np.sort(K)[0, 0:k]
        a = np.apply_along_axis(f, axis=0, arr=sorted_distances)
        return np.nan_to_num(a)
Esempio n. 4
0
def reduce_grid(x):
    """
    Undoes expand_grid to take (nx, 2) array to two vectors containing unique values of each col.
    :param x: (nx, 2) points
    :return: x1, x2 each vectors
    """
    x1 = np.sort(np.unique(x[:, 0]))
    x2 = np.sort(np.unique(x[:, 1]))
    return x1, x2
Esempio n. 5
0
def other_r_selection(rl1_select, z2_z1s):
    ''' Chose the meaningful dimensions from the second layer to the end of the network
    rl1_select (list): The dimension kept over the first layer 
    z2_z1s (list of ndarrays): z^{(l + 1)}| z^{(l)}, s
    --------------------------------------------------------------------------
    return (list of int): The dimensions to keep from the second layer of the network
    '''

    S = [zz.shape[2] for zz in z2_z1s] + [1]
    CORR_THRESHOLD = 0.20

    L = len(z2_z1s)
    M = np.array([zz.shape[0] for zz in z2_z1s] + [z2_z1s[-1].shape[1]])
    prev_new_r = [len(rl1_select)]

    dims_to_keep = []

    for l in range(L):
        # Will not keep the following layers if one of the previous layer is of dim 1
        if prev_new_r[l] <= 1:
            dims_to_keep.append([])
            prev_new_r.append(0)

        else:
            old_rl = z2_z1s[l].shape[-1]
            corr = np.zeros(old_rl)

            for s in range(S[l]):
                for m1 in range(M[l + 1]):
                    pca = PCA(n_components=1)
                    pca.fit_transform(z2_z1s[l][m1, :, s])
                    corr += np.abs(pca.components_[0])

            average_corr = corr / (S[l] * M[l + 1])
            new_rl = np.sum(average_corr > CORR_THRESHOLD)

            if prev_new_r[l] > new_rl:  # Respect r1 > r2 > r3 ....
                wanted_dims = np.where(
                    average_corr > CORR_THRESHOLD)[0].tolist()
                wanted_dims = np.sort(wanted_dims)
                dims_to_keep.append(wanted_dims)

            else:  # Have to delete other dimensions to match r1 > r2 > r3 ....
                nb_dims_to_remove = old_rl - prev_new_r[l] + 1
                unwanted_dims = np.argpartition(
                    average_corr, nb_dims_to_remove)[:nb_dims_to_remove]
                wanted_dims = list(set(range(old_rl)) - set(unwanted_dims))
                wanted_dims = np.sort(wanted_dims)
                dims_to_keep.append(wanted_dims)
                new_rl = len(wanted_dims)

            prev_new_r.append(new_rl)

    return dims_to_keep
Esempio n. 6
0
def step_generator(t, **kwargs):
    '''
    Makes a random piecewise constant step frequency input.  Note 
    that the steps always take on integer values.
    '''
    # lets make random piecewise frequency
    num_steps = 2
    if 'num_steps' in kwargs:
        num_steps = kwargs['num_steps'] - 1

    # pick num_pieces random locations for step ledges
    r = np.random.permutation(len(t))[:num_steps]
    r = np.sort(r)

    # generate random level per step
    levels = np.round(5 * np.random.rand(num_steps + 1)) + 1
    f = np.ones((t.size, 1))

    # set each chunk to appropriate level
    f[:r[0]] *= levels[0]  # set first chunk to appropriate level
    for n in range(1, len(r) - 1):
        f[r[n - 1]:r[n]] *= levels[n]
    f[r[-1]:] *= levels[-1]

    return f
Esempio n. 7
0
def run(backend=SUPPORTED_BACKENDS[0], quiet=True):
    num_rows = 10
    rank = 3
    matrix = np.random.normal(size=(num_rows, num_rows))
    matrix = 0.5 * (matrix + matrix.T)

    # Solve the problem with pymanopt.
    manifold = Oblique(rank, num_rows)
    cost, euclidean_gradient, euclidean_hessian = create_cost_and_derivates(
        manifold, matrix, backend
    )
    problem = pymanopt.Problem(
        manifold,
        cost,
        euclidean_gradient=euclidean_gradient,
        euclidean_hessian=euclidean_hessian,
    )

    optimizer = TrustRegions(verbosity=2 * int(not quiet))
    X = optimizer.run(problem).point

    if quiet:
        return

    C = X.T @ X
    print("Diagonal elements:", np.diag(C))
    print("Eigenvalues:", np.sort(np.linalg.eig(C)[0].real)[::-1])
Esempio n. 8
0
    def train(self, subsample_idcs=None, ridge=1e-9, max_storage=1e8):
        self.idcs = np.sort(subsample_idcs)
        self.X_ind = self.X[self.idcs, :]

        self.chunk_size = int(max_storage / float(self.idcs.shape[0]))
        if self.chunk_size == 0:
            self.chunk_size = 1
        csz = self.chunk_size

        #can handle len(idcs)**2 memory, len(idcs)**3 time cost
        Kxx = self.k(self.X[self.idcs, :])
        Ysum = np.zeros((self.idcs.shape[0], self.Y.shape[1]))
        Ksum = np.zeros((self.idcs.shape[0], self.idcs.shape[0]))

        pbar = ProgressBar('Chunk sum', 0, self.X.shape[0])
        j = 0
        csz = self.idcs.shape[0]
        while j * csz < self.X.shape[0]:
            pbar.update(j * csz)
            Kchunk = self.k(self.X[j * csz:(j + 1) * csz, :],
                            self.X[self.idcs, :])
            Ychunk = self.Y[j * csz:(j + 1) * csz, :]
            Ysum += Kchunk.T.dot(Ychunk)
            Ksum += Kchunk.T.dot(Kchunk)
            j += 1
        pbar.finish()

        self.V = Ksum + self.lvar * Kxx
        self.V += ridge * np.fabs(self.V).max() * np.eye(self.V.shape[0])
        self.alpha = np.linalg.solve(self.V, Ysum)
        self.V /= self.lvar
def generate_random_features_1d(data, num_feat):
    '''
    This functions generates random features for a set of paired inputs, such as times and observations
    Inputs:
    - data:  (n x d) array
    - num_feat: number of random features to be generated
    Output:
    - features in fixed dimensional space (n x num_feat) array
    '''
    # find length-scale for random features using median heuristic
    if isinstance(data, list):
        mean_obs = int(np.mean([len(row) for row in data]))
        data_sig = np.array([
            x[np.sort(np.random.choice(range(len(x)), mean_obs,
                                       replace=False))] for x in data
            if len(x) >= mean_obs
        ])

        sig = meddistance(np.concatenate(data_sig)[:, np.newaxis],
                          subsample=1000)
    else:
        sig = meddistance(data, subsample=1000)

    return np.array(
        [f1(row[:, np.newaxis], rp(num_feat, sig, 1)) for row in data])
Esempio n. 10
0
def specified_task(problem):
    """Given a problem, return parameters for running a topology optimization."""
    fixdofs = np.flatnonzero(problem.normals.ravel())
    alldofs = np.arange(2 * (problem.width + 1) * (problem.height + 1))
    freedofs = np.sort(list(set(alldofs) - set(fixdofs)))

    params = {
        # material properties
        'young': 1,
        'young_min': 1e-9,
        'poisson': 0.3,
        'g': 0,
        # constraints
        'volfrac': problem.density,
        'xmin': 0.001,
        'xmax': 1.0,
        # input parameters
        'nelx': problem.width,
        'nely': problem.height,
        'mask': problem.mask,
        'freedofs': freedofs,
        'fixdofs': fixdofs,
        'forces': problem.forces.ravel(),
        'penal': 3.0,
        'filter_width': 2,
    }
    return params
def summarize_res(sname, datasize):
    print(sname)
    res = []
    times = []
    for i in range(100):
        PATH = ROOT_PATH + "/MMR_IVs/results/zoo/" + sname + "/"
        filename = os.path.join(
            PATH, str(date.today()),
            'LMO_errs_{}_nystr_prodkern_{}.npy'.format(i, datasize))
        if os.path.exists(filename):
            tmp_res = np.load(filename, allow_pickle=True)
            if tmp_res[-1] is not None:
                res += [tmp_res[-1]]
        time_path = os.path.join(
            PATH, str(date.today()),
            '/LMO_errs_{}_nystr_prodkern_{}_time.npy'.format(i, datasize))
        if os.path.exists(time_path):
            t = np.load(time_path)
            times += [t]
    res = np.array(res)
    times = np.array(times)
    res = remove_outliers(res)
    times = np.sort(times)[:80]
    print(times)
    print('mean, std: ', np.mean(res), np.std(res))
    print('time: ', np.mean(times), np.std(times))
Esempio n. 12
0
    def __init__(self,
                 breakpoints,
                 alpha=0.05,
                 penalizer=0.0,
                 fit_intercept=True,
                 *args,
                 **kwargs):
        super(PiecewiseExponentialRegressionFitter, self).__init__(alpha=alpha)

        breakpoints = np.sort(breakpoints)
        if len(breakpoints) and not (breakpoints[-1] < np.inf):
            raise ValueError("Do not add inf to the breakpoints.")

        if len(breakpoints) and breakpoints[0] < 0:
            raise ValueError("First breakpoint must be greater than 0.")

        self.breakpoints = np.append(breakpoints, [np.inf])
        self.n_breakpoints = len(self.breakpoints)

        self._hazard = egrad(self._cumulative_hazard, argnum=1)  # pylint: disable=unexpected-keyword-arg
        self.penalizer = penalizer
        self.fit_intercept = fit_intercept
        self._fitted_parameter_names = [
            "lambda_%d_" % i for i in range(self.n_breakpoints)
        ]
Esempio n. 13
0
def interpolate(t, y, num_obs=50):
    """
    Interpolates each trajectory such that observation times coincide for each one.
    
    Note: initially cubic interpolation gave great power, but this happens as an artifact of the interpolation,
    as both trajectories have the same number of observations. Type I error was increased as a result. To avoid 
    this we settled for a linear interpolation between observations.
    Splines were also tried but gave very bad interpolations.
    """

    t = np.array([np.sort(row) for row in t])
    t = np.insert(t, 0, 0, axis=1)
    t = np.insert(t, len(t[0]), 1, axis=1)
    y = np.insert(y, 0, y[:, 0], axis=1)
    y = np.insert(y, len(y[0]), y[:, -1], axis=1)

    new_t = np.zeros(num_obs)
    new_y = np.zeros(num_obs)

    for i in range(len(t)):
        f = interp1d(t[i], y[i], kind='linear')
        #f = splrep(t[i], y[i])
        t_temp = np.random.uniform(low=0.0, high=1.0,
                                   size=num_obs)  #np.linspace(0.1,0.9,num_obs)
        y_temp = f(t_temp)
        #y_temp = splev(t_temp, f, der=0)
        new_y = np.vstack((new_y, y_temp))
        new_t = np.vstack((new_t, t_temp))

    return new_t[1:], new_y[1:]
Esempio n. 14
0
    def train(self, subsample_idcs=None, ridge=1e-9):
        self.idcs = np.sort(subsample_idcs)
        self.X_ind = self.X[self.idcs, :]

        Kxx = self.k(self.X[self.idcs, :])
        self.alpha = np.linalg.solve(
            Kxx + self.lvar * np.eye(self.idcs.shape[0]), self.Y[self.idcs, :])
        self.V = Kxx + self.lvar * np.eye(self.idcs.shape[0])
Esempio n. 15
0
File: hmm.py Progetto: yahmadian/ssm
 def permute(self, perm):
     """
     Permute the discrete latent states.
     """
     assert np.all(np.sort(perm) == np.arange(self.K))
     self.init_state_distn.permute(perm)
     self.transitions.permute(perm)
     self.observations.permute(perm)
Esempio n. 16
0
def _simplex_projection(x):
    u = np.sort(x)[::-1]
    idcs = np.arange(1, u.shape[0] + 1)
    rho_nz = u + 1. / idcs * (1. - np.cumsum(u)) > 0
    rho = idcs[rho_nz].max()
    lmb = 1. / rho * (1. - u[:rho].sum())
    out = np.maximum(x + lmb, 0.)
    return out / out.sum()
Esempio n. 17
0
    def pretrain(self, subsample_idcs, ridge=1e-9):
        self.sridcs = np.sort(subsample_idcs)

        #get matrices necessary to compute khat(x,x') and muhat(x)
        #using subset of regressors
        srgp = SubsetRegressorsGP(self.X, self.Y, self.k, self.lvar)
        srgp.train(self.sridcs, ridge)
        self.pre_alpha = srgp.alpha
        self.V = srgp.V
        self.V += ridge * np.fabs(self.V).max() * np.eye(self.sridcs.shape[0])
Esempio n. 18
0
def compute_khat_iterates(iterate_chains,
                          warmup=0.85,
                          param_idx=0,
                          increasing=True):
    """
    Compute the khat over iterates for a variational parameter after removing warmup.
    Parameters
    ----------
    iterate_chains : multi-dimensional array, shape=(n_chains, n_iters, n_var_params)

    warmup : warmup iterates

    param_idx : index of the variational parameter

    increasing : boolean sort array in increasing order: TRUE or decreasing order:FALSE

    fraction: the fraction of iterates
    Returns
    -------
    maximum of khat over all chains for the variational parameter param_idx

    """
    chains = iterate_chains[:, :, param_idx]
    n_iters = chains.shape[1]
    n_chains = chains.shape[0]

    k_hat_values = np.zeros(n_chains)
    for i in range(n_chains):
        if increasing:
            sorted_chain = np.sort(chains[i, :])
        else:
            sorted_chain = np.sort(-chains[i, :])

        ind_last = int(n_iters * warmup)
        filtered_chain = sorted_chain[ind_last:]
        if increasing:
            filtered_chain = filtered_chain - np.min(filtered_chain)
        else:
            filtered_chain = filtered_chain - np.min(filtered_chain)
        k_post, _ = gpdfit(filtered_chain)
        k_hat_values[i] = k_post

    return np.nanmax(k_hat_values)
Esempio n. 19
0
def sample_inputs(type, ndata, range):
    low, high = range
    if type == 'gridbox':
        x = np.linspace(low, high, ndata).reshape(ndata, 1)
    elif type == "uniform":
        x = np.random.uniform(low, high, size=(ndata, 1))
    elif type == 'normal':
        x = np.random.randn(ndata, 1)

    return np.sort(x, axis=0)
Esempio n. 20
0
def load_data(path='datasets/plays.tsv'):
    raw_data = pd.read_table('datasets/plays.tsv')
    raw_data = raw_data.drop(raw_data.columns[1], axis=1)
    raw_data.columns = ['user', 'artist', 'plays']
    data = raw_data.dropna().sample(frac=1)[:70]

    data['user_id'] = data['user'].astype("category").cat.codes
    data['artist_id'] = data['artist'].astype("category").cat.codes
    data = data.drop(['user', 'artist'], axis=1)

    data = data.loc[data.plays != 0]

    users = list(np.sort(data.user_id.unique()))
    artists = list(np.sort(data.artist_id.unique()))
    plays = list(data.plays)

    rows = data.user_id.astype(int)
    cols = data.artist_id.astype(int)

    return sparse.csr_matrix((plays, (rows, cols)),
                             shape=(len(users), len(artists)))
Esempio n. 21
0
 def generate_synthetic_data(self, theta, Ndata):
     """
     Generate a synthetic dataset from parameters theta.
     :param theta:  ChangepointParams instance
     :param Ndata:  number of data points
     :return:  (x, y) pairs corresponding to synthetic dataset
     """
     L = self.xmax - self.xmin
     x = np.sort(self.xmin + L * np.random.uniform(size=(Ndata, )))
     epsilon = np.random.normal(size=x.shape)
     y = self.predict(theta, x) + theta.sig * epsilon
     return x, y
Esempio n. 22
0
def k_select(w_s, k, new_L, clustering_layer):
    ''' Automatic choice of the number of components by layer 
    w_s (list): The path probabilities for all s in [1,S]
    k (dict): The number of component on each layer
    new_L (int): The selected total number of layers.
    clustering_layer (int): The index of the clustering layer
    --------------------------------------------------------------------------
    returns (dict): The components kept for all the layers of the network
    '''

    L = len(k)
    n_clusters = k[clustering_layer]

    # If the clustering layer (cl) is deleted, define the last existing layer as cl
    last_layer_idx = new_L - 1
    if last_layer_idx < clustering_layer:
        clustering_layer = last_layer_idx

    components_to_keep = []
    w = w_s.reshape(*k, order='C')

    for l in range(new_L):

        PROBA_THRESHOLD = 1 / (k[l] * 4)

        other_layers_indices = tuple(set(range(L)) - set([l]))
        components_proba = w.sum(other_layers_indices)
        #print(components_proba)

        if l == clustering_layer:
            biggest_lik_comp = np.sort(
                components_proba.argsort()[::-1][:n_clusters])
            components_to_keep.append(biggest_lik_comp)

        else:
            comp_kept = np.where(components_proba > PROBA_THRESHOLD)[0]
            comp_kept = np.sort(comp_kept)
            components_to_keep.append(comp_kept)

    return components_to_keep
    def _update_clipping_parameter(self, impt_smplg_weight):
        """ Updates the clipping parameter for Bottou's heuristic

        Args:
            impt_smplg_weight (np.array): importance sampling weights
        """
        if self.hyperparams['M'] == 'auto':
            sorted_copy = np.sort(impt_smplg_weight.copy())
            self.hyperparams['M'] = sorted_copy[-5]
        elif self.hyperparams['M'] == 'None':
            pass
        else:
            self.hyperparams['M'] = float(self.hyperparams['M'])
Esempio n. 24
0
def init_multicomponent_source(sky_coord, frame, observation, bg_rms, flux_percentiles=None,
                               thresh=1., symmetric=True, monotonic=True):
    """Initialize multiple components
    See `MultiComponentSource` for a description of the parameters
    """
    if flux_percentiles is None:
        flux_percentiles = [25]
    # Initialize the first component as an extended source
    sed, morph = init_extended_source(sky_coord, frame, observation, bg_rms,
                                      thresh, symmetric, monotonic)
    # create a list of components from base morph by layering them on top of
    # each other so that they sum up to morph
    K = len(flux_percentiles) + 1

    Ny, Nx = morph.shape
    morphs = np.zeros((K, Ny, Nx), dtype=morph.dtype)
    morphs[0, :, :] = morph[:, :]
    max_flux = morph.max()
    percentiles_ = np.sort(flux_percentiles)
    last_thresh = 0
    for k in range(1, K):
        perc = percentiles_[k - 1]
        flux_thresh = perc * max_flux / 100
        mask_ = morph > flux_thresh
        morphs[k - 1][mask_] = flux_thresh - last_thresh
        morphs[k][mask_] = morph[mask_] - flux_thresh
        last_thresh = flux_thresh

    # renormalize morphs: initially Smax
    for k in range(K):
        if np.all(morphs[k] <= 0):
            msg = "Zero or negative morphology for component {} at y={}, x={}"
            logger.warning(msg.format(k, *skycoords))
        morphs[k] /= morphs[k].max()

    # optimal SEDs given the morphologies, assuming img only has that source
    seds = get_best_fit_seds(morphs, frame, observation)

    for k in range(K):
        if np.any(seds[k] <= 0):
            # If the flux in all channels is  <=0,
            # the new sed will be filled with NaN values,
            # which will cause the code to crash later
            msg = "Zero or negative SED {} for component {} at y={}, x={}".format(seds[k], k, *sky_coord)
            if np.all(sed <= 0):
                logger.warning(msg)
            else:
                logger.info(msg)

    return seds, morphs
Esempio n. 25
0
    def __init__(self, breakpoints, *args, **kwargs):
        breakpoints = np.sort(breakpoints)
        if not (breakpoints[-1] < np.inf):
            raise ValueError("Do not add inf to the breakpoints.")

        if breakpoints[0] < 0:
            raise ValueError("First breakpoint must be greater than 0.")

        self.breakpoints = np.append(breakpoints, [np.inf])
        n_breakpoints = len(self.breakpoints)

        self._fitted_parameter_names = ["lambda_%d_" % i for i in range(n_breakpoints)]

        super(PiecewiseExponentialFitter, self).__init__(*args, **kwargs)
Esempio n. 26
0
    def plot_train_fits(W, axarr):
        params    = pred_fun(W, train_images)
        means     = params[:, :8]
        variances = np.exp(params[:,-8:]) # axis aligned variances

        # plot 5 random data points and 4 random marginals
        idx  = np.sort(np.random.permutation(train_images.shape[0])[:axarr.shape[0]])
        dims = np.sort(np.random.permutation(samps.shape[-1])[:axarr.shape[1]])
        for r, i in enumerate(idx):
            for c, d in enumerate(dims):
                axarr[r, c].cla()
                n, bins, patches = axarr[r, c].hist(samps[i, :, d], 
                                                    bins=20, normed=True)
                axarr[r, c].plot( [means[i, d], means[i, d]], [0, n.max()] )
                thgrid = np.linspace(min(bins[0],  means[i,d]),
                                     max(bins[-1], means[i,d]), 50)
                axarr[r, c].plot(thgrid, 
                    np.exp(gu.mog_logmarglike(thgrid, 
                                   means = np.array([ means[i] ]),
                                   covs  = np.array([ np.diag(variances[i]) ]),
                                   pis   = np.array([1.]),
                                   ind   = d)))
                axarr[r, c].set_title("Idx = %d, dim = %d"%(i, d))
        plt.draw()
Esempio n. 27
0
    def list_simulate_spectral(cov, J, n_simulate=1000, seed=82):
        """
        Simulate the null distribution using the spectrums of the covariance
        matrix.  This is intended to be used to approximate the null
        distribution.

        Return (a numpy array of simulated n*FSSD values, eigenvalues of cov)
        """
        # eigen decompose
        eigs, _ = np.linalg.eig(cov)
        eigs = np.real(eigs)
        # sort in decreasing order
        eigs = -np.sort(-eigs)
        sim_fssds = FSSD.simulate_null_dist(eigs, J, n_simulate=n_simulate, seed=seed)
        return sim_fssds, eigs
    def __init__(self, breakpoints, alpha=0.05, penalizer=0.0):
        super(PiecewiseExponentialRegressionFitter, self).__init__(alpha=alpha)

        breakpoints = np.sort(breakpoints)
        if len(breakpoints) and not (breakpoints[-1] < np.inf):
            raise ValueError("Do not add inf to the breakpoints.")

        if len(breakpoints) and breakpoints[0] < 0:
            raise ValueError("First breakpoint must be greater than 0.")

        self.breakpoints = np.append(breakpoints, [np.inf])
        self.n_breakpoints = len(self.breakpoints)

        self.penalizer = penalizer
        self._fitted_parameter_names = ["lambda_%d_" % i for i in range(self.n_breakpoints)]
def generate_random_features(t, y, num_feat):
    '''
    This functions generates random features for a set of paired inputs, such as times and observations
    Inputs:
    - t: first dimension of data, (n x d) array
    - y: second dimension of data, (n x d) array
    - num_feat: number of random features to be generated
    Output:
    - features in fixed dimensional space (n x num_feat) array
    '''
    # if different sizes do interpolation and coerce to equal number of dimensions
    if isinstance(t, list):
        # find length-scale for random features using median heuristic
        mean_obs = int(np.mean([len(row) for row in t]))
        np.random.seed(0)
        t_sig = np.array([
            x[np.sort(np.random.choice(range(len(x)), mean_obs,
                                       replace=False))] for x in t
            if len(x) > mean_obs
        ])
        y_sig = np.array([
            x[np.sort(np.random.choice(range(len(x)), mean_obs,
                                       replace=False))] for x in y
            if len(x) > mean_obs
        ])

        sig = meddistance(np.hstack((t_sig, y_sig)), subsample=1000)
        np.random.seed()

    else:
        sig = meddistance(np.hstack((t, y)), subsample=1000)

    return np.array([
        f1(np.hstack((t[:, np.newaxis], y[:, np.newaxis])),
           rp(num_feat, sig, 2)) for (t, y) in zip(t, y)
    ])
Esempio n. 30
0
def init_multicomponent_source(sky_coord,
                               scene,
                               observations,
                               bg_rms,
                               flux_percentiles=None,
                               obs_idx=0,
                               thresh=1.,
                               symmetric=True,
                               monotonic=True):
    """Initialize multiple components
    See `MultiComponentSource` for a description of the parameters
    """
    try:
        iter(observations)
    except TypeError:
        observations = [observations]

    if flux_percentiles is None:
        flux_percentiles = [25]
    # Initialize the first component as an extended source
    sed, morph = init_extended_source(sky_coord, scene, observations, bg_rms,
                                      obs_idx, thresh, symmetric, monotonic)
    # create a list of components from base morph by layering them on top of
    # each other so that they sum up to morph
    K = len(flux_percentiles) + 1

    Ny, Nx = morph.shape
    morphs = np.zeros((K, Ny, Nx), dtype=morph.dtype)
    morphs[0, :, :] = morph[:, :]
    max_flux = morph.max()
    percentiles_ = np.sort(flux_percentiles)
    last_thresh = 0
    for k in range(1, K):
        perc = percentiles_[k - 1]
        flux_thresh = perc * max_flux / 100
        mask_ = morph > flux_thresh
        morphs[k - 1][mask_] = flux_thresh - last_thresh
        morphs[k][mask_] = morph[mask_] - flux_thresh
        last_thresh = flux_thresh

    # renormalize morphs: initially Smax
    for k in range(K):
        morphs[k] /= morphs[k].max()

    # optimal SEDs given the morphologies, assuming img only has that source
    seds = get_best_fit_seds(morphs, scene, observations)

    return seds, morphs
Esempio n. 31
0
def projectSimplex(mat):
    """ project each row vector to the simplex
    """
    nPoints, nVars = mat.shape
    mu = np.fliplr(np.sort(mat, axis=1))
    sum_hist = np.cumsum(mu, axis=1)
    flag = (mu - 1./np.tile(np.arange(1,nVars+1),(nPoints,1))*(sum_hist-1) > 0)
    
    f_flag = lambda flagPoint: len(flagPoint) - 1 - \
            flagPoint[::-1].argmax()
    lastTrue = map(f_flag, flag)
    
    sm_row = sum_hist[np.arange(nPoints), lastTrue]
    
    theta = (sm_row - 1)*1./(np.array(lastTrue)+1.)
    
    w = np.maximum(mat - np.tile(theta, (nVars,1)).T, 0.)
    
    return w
Esempio n. 32
0
def projectSimplex_vec(v):
    """ project vector v onto the probability simplex
    Parameter
    ---------
    v: shape(nVars,)
        input vector

    Returns
    -------
    w: shape(nVars,)
        projection of v onto the probability simplex
    """

    nVars = v.shape[0]
    mu = np.sort(v,kind='quicksort')[::-1]
    sm_hist = np.cumsum(mu)
    flag = (mu - 1./np.arange(1,nVars+1)*(sm_hist-1) > 0)
    
    lastTrue = len(flag) - 1 - flag[::-1].argmax()
    sm_row = sm_hist[lastTrue]
     
    theta = 1./(lastTrue+1) * (sm_row - 1)
    w = np.maximum(v-theta, 0.)
    return w