def generate(self, model_len=Constant.MODEL_LEN, model_width=Constant.MODEL_WIDTH): pooling_len = int(model_len / 4) graph = Graph(self.input_shape, False) temp_input_channel = self.input_shape[-1] output_node_id = 0 for i in range(model_len): output_node_id = graph.add_layer(StubReLU(), output_node_id) output_node_id = graph.add_layer( StubConv(temp_input_channel, model_width, kernel_size=3), output_node_id) output_node_id = graph.add_layer( StubBatchNormalization(model_width), output_node_id) temp_input_channel = model_width if pooling_len == 0 or ((i + 1) % pooling_len == 0 and i != model_len - 1): output_node_id = graph.add_layer(StubPooling(), output_node_id) output_node_id = graph.add_layer(StubGlobalPooling(), output_node_id) output_node_id = graph.add_layer( StubDropout(Constant.CONV_DROPOUT_RATE), output_node_id) output_node_id = graph.add_layer( StubDense(graph.node_list[output_node_id].shape[0], model_width), output_node_id) output_node_id = graph.add_layer(StubReLU(), output_node_id) graph.add_layer(StubDense(model_width, self.n_output_node), output_node_id) return graph
def get_conv_dense_model(): graph = Graph((32, 32, 3), False) output_node_id = 0 output_node_id = graph.add_layer(StubReLU(), output_node_id) output_node_id = graph.add_layer(StubConv(3, 3, 3), output_node_id) output_node_id = graph.add_layer(StubBatchNormalization(3), output_node_id) output_node_id = graph.add_layer(StubReLU(), output_node_id) output_node_id = graph.add_layer(StubConv(3, 3, 3), output_node_id) output_node_id = graph.add_layer(StubBatchNormalization(3), output_node_id) output_node_id = graph.add_layer(StubFlatten(), output_node_id) output_node_id = graph.add_layer(StubDropout(Constant.DENSE_DROPOUT_RATE), output_node_id) output_node_id = graph.add_layer(StubReLU(), output_node_id) output_node_id = graph.add_layer( StubDense(graph.node_list[output_node_id].shape[0], 5), output_node_id) output_node_id = graph.add_layer(StubReLU(), output_node_id) output_node_id = graph.add_layer(StubDense(5, 5), output_node_id) graph.add_layer(StubSoftmax(), output_node_id) graph.produce_model().set_weight_to_graph() return graph
def generate(self, model_len=Constant.MLP_MODEL_LEN, model_width=Constant.MLP_MODEL_WIDTH): if type(model_width) is list and not len(model_width) == model_len: raise ValueError( 'The length of \'model_width\' does not match \'model_len\'') elif type(model_width) is int: model_width = [model_width] * model_len graph = Graph(self.input_shape[0], False) output_node_id = 0 n_nodes_prev_layer = self.input_shape[0] for width in model_width: output_node_id = graph.add_layer( StubDense(n_nodes_prev_layer, width), output_node_id) output_node_id = graph.add_layer( StubDropout(Constant.MLP_DROPOUT_RATE), output_node_id) output_node_id = graph.add_layer(StubReLU(), output_node_id) n_nodes_prev_layer = width graph.add_layer(StubDense(n_nodes_prev_layer, self.n_output_node), output_node_id) return graph