Esempio n. 1
0
    def __init__(self, verbose=False, path=None, resume=False, searcher_args=None,
                 search_type=BayesianSearcher):
        """Initialize the instance.

        The classifier will be loaded from the files in 'path' if parameter 'resume' is True.
        Otherwise it would create a new one.
        Args:
            verbose: A boolean of whether the search process will be printed to stdout.
            path: A string. The path to a directory, where the intermediate results are saved.
            resume: A boolean. If True, the classifier will continue to previous work saved in path.
                Otherwise, the classifier will start a new search.
            searcher_args: A dictionary containing the parameters for the searcher's __init__ function.
            search_type: A constant denoting the type of hyperparameter search algorithm that must be used.
        """
        super().__init__(verbose)

        if searcher_args is None:
            searcher_args = {}

        if path is None:
            path = rand_temp_folder_generator()

        self.path = path
        ensure_dir(path)
        if resume:
            classifier = pickle_from_file(os.path.join(self.path, 'classifier'))
            self.__dict__ = classifier.__dict__
            self.cnn = pickle_from_file(os.path.join(self.path, 'module'))
        else:
            self.y_encoder = None
            self.data_transformer = None
            self.verbose = verbose
            self.cnn = CnnModule(self.loss, self.metric, searcher_args, path, verbose, search_type)
Esempio n. 2
0
    def __init__(self, verbose=False, path=None, resume=False, searcher_args=None,
                 search_type=BayesianSearcher):
        """Initialize the instance.

        The classifier will be loaded from the files in 'path' if parameter 'resume' is True.
        Otherwise it would create a new one.
        Args:
            verbose: A boolean of whether the search process will be printed to stdout.
            path: A string. The path to a directory, where the intermediate results are saved.
            resume: A boolean. If True, the classifier will continue to previous work saved in path.
                Otherwise, the classifier will start a new search.
            searcher_args: A dictionary containing the parameters for the searcher's __init__ function.
            search_type: A constant denoting the type of hyperparameter search algorithm that must be used.
        """
        super().__init__(verbose)

        if searcher_args is None:
            searcher_args = {}

        if path is None:
            path = rand_temp_folder_generator()

        self.path = path
        ensure_dir(path)
        if resume:
            classifier = pickle_from_file(os.path.join(self.path, 'classifier'))
            self.__dict__ = classifier.__dict__
            self.cnn = pickle_from_file(os.path.join(self.path, 'module'))
        else:
            self.y_encoder = None
            self.data_transformer = None
            self.verbose = verbose
            self.cnn = CnnModule(self.loss, self.metric, searcher_args, path, verbose, search_type)
Esempio n. 3
0
def text_preprocess(x_train):
    """This is the text preprocess main method.

    It takes an raw string, clean it and processing it into tokenlized numpy array.
    """
    if Constant.STORE_PATH == '':
        temp_path = temp_path_generator()
        path = temp_path + '_store'
    else:
        path = Constant.STORE_PATH

    ensure_dir(path)

    x_train = [clean_str(x) for x in x_train]
    x_train, word_index = tokenlize_text(
        max_seq_length=Constant.MAX_SEQUENCE_LENGTH,
        max_num_words=Constant.MAX_NB_WORDS,
        x_train=x_train)

    print("generating preprocessing model...")
    x_train = processing(path=path,
                         word_index=word_index,
                         input_length=Constant.MAX_SEQUENCE_LENGTH,
                         x_train=x_train)
    return x_train
Esempio n. 4
0
    def __init__(self, verbose=False, path=constant.DEFAULT_SAVE_PATH, resume=False,
                 searcher_args=None):
        """Initialize the instance.

        The classifier will be loaded from the files in 'path' if parameter 'resume' is True.
        Otherwise it would create a new one.

        Args:
            verbose: An boolean of whether the search process will be printed to stdout.
            path: A string. The path to a directory, where the intermediate results are saved.
            resume: An boolean. If True, the classifier will continue to previous work saved in path.
                Otherwise, the classifier will start a new search.

        """
        if searcher_args is None:
            searcher_args = {}

        if has_file(os.path.join(path, 'classifier')) and resume:
            classifier = pickle_from_file(os.path.join(path, 'classifier'))
            self.__dict__ = classifier.__dict__
            self.path = path
        else:
            self.y_encoder = None
            self.data_transformer = None
            self.verbose = verbose
            self.searcher = False
            self.path = path
            self.searcher_args = searcher_args
            ensure_dir(path)
 def __init__(self, model_path=None, overwrite=False):
     super(VoiceGenerator, self).__init__()
     self.model_path = model_path if model_path is not None else temp_path_generator()
     ensure_dir(self.model_path)
     self.checkpoint_path = os.path.join(self.model_path, Constant.PRE_TRAIN_VOICE_GENERATOR_MODEL_NAME)
     self.sample_rate = 0
     self.hop_length = 0
     self.overwrite = overwrite
     self.device = get_device()
     self.load()
Esempio n. 6
0
 def __init__(self, model_path=None, overwrite=False):
     super(VoiceGenerator, self).__init__()
     if model_path is None:
         model_path = temp_path_generator()
     self.model_path = model_path
     ensure_dir(self.model_path)
     self.checkpoint_path = os.path.join(self.model_path, Constant.PRE_TRAIN_VOICE_GENERATOR_MODEL_NAME)
     self.sample_rate = 0
     self.hop_length = 0
     self.overwrite = overwrite
     self.load()
Esempio n. 7
0
 def __init__(self, loss, metric, searcher_args=None, path=None, verbose=False, search_type=BayesianSearcher):
     self.searcher_args = searcher_args if searcher_args is not None else {}
     self.searcher = None
     self.path = path if path is not None else rand_temp_folder_generator()
     ensure_dir(self.path)
     if verbose:
         print('Saving Directory:', self.path)
     self.verbose = verbose
     self.loss = loss
     self.metric = metric
     self.generators = []
     self.search_type = search_type
Esempio n. 8
0
 def __init__(self, loss, metric, searcher_args=None, path=None, verbose=False, search_type=BayesianSearcher):
     self.searcher_args = searcher_args if searcher_args is not None else {}
     self.searcher = None
     self.path = path if path is not None else rand_temp_folder_generator()
     ensure_dir(self.path)
     if verbose:
         print('Saving Directory:', self.path)
     self.verbose = verbose
     self.loss = loss
     self.metric = metric
     self.generators = []
     self.search_type = search_type
Esempio n. 9
0
 def load(self, model_path=None):
     temp_path = temp_path_generator()
     ensure_dir(temp_path)
     model_paths = [
         f'{temp_path}/{file_name}'
         for file_name in Constant.FACE_DETECTOR['MODEL_NAMES']
     ]
     for google_id, file_name in zip(
             Constant.FACE_DETECTOR['MODEL_GOOGLE_ID'],
             Constant.FACE_DETECTOR['MODEL_NAMES']):
         download_file_from_google_drive(
             file_id=google_id, dest_path=f'{temp_path}/{file_name}')
     return model_paths
Esempio n. 10
0
 def __init__(self, path=None, **kwargs):
     """
     Initialization function for tabular supervised learner.
     """
     super().__init__(**kwargs)
     self.is_trained = False
     self.clf = None
     self.objective = None
     self.tabular_preprocessor = None
     self.path = path if path is not None else rand_temp_folder_generator()
     ensure_dir(self.path)
     if self.verbose:
         print('Path:', path)
     self.save_filename = os.path.join(self.path, 'lgbm.txt')
     self.time_limit = None
     self.lgbm = None
Esempio n. 11
0
 def __init__(self, path=None, **kwargs):
     """
     Initialization function for tabular supervised learner.
     """
     super().__init__(**kwargs)
     self.is_trained = False
     self.clf = None
     self.objective = None
     self.tabular_preprocessor = None
     self.path = path if path is not None else rand_temp_folder_generator()
     ensure_dir(self.path)
     if self.verbose:
         print('Path:', path)
     self.save_filename = os.path.join(self.path, 'lgbm.txt')
     self.time_limit = None
     self.lgbm = None
Esempio n. 12
0
    def __init__(self,
                 verbose=False,
                 path=None,
                 resume=False,
                 searcher_args=None,
                 augment=None):
        """Initialize the instance.

        The classifier will be loaded from the files in 'path' if parameter 'resume' is True.
        Otherwise it would create a new one.

        Args:
            verbose: A boolean of whether the search process will be printed to stdout.
            path: A string. The path to a directory, where the intermediate results are saved.
            resume: A boolean. If True, the classifier will continue to previous work saved in path.
                Otherwise, the classifier will start a new search.
            augment: A boolean value indicating whether the data needs augmentation. If not define, then it
                will use the value of Constant.DATA_AUGMENTATION which is True by default.

        """
        super().__init__(verbose)

        if searcher_args is None:
            searcher_args = {}

        if path is None:
            path = temp_folder_generator()

        self.cnn = CnnModule(self.loss, self.metric, searcher_args, path,
                             verbose)

        if augment is None:
            augment = Constant.DATA_AUGMENTATION

        if has_file(os.path.join(path, 'classifier')) and resume:
            classifier = pickle_from_file(os.path.join(path, 'classifier'))
            self.__dict__ = classifier.__dict__
            self.path = path
        else:
            self.y_encoder = None
            self.data_transformer = None
            self.verbose = verbose
            self.searcher = False
            self.path = path
            self.searcher_args = searcher_args
            self.augment = augment
            ensure_dir(path)
Esempio n. 13
0
 def __init__(self, verbose=True, model_path=None):
     """Initialize the instance."""
     self.verbose = verbose
     self.model = None
     self.device = get_device()
     self.model_path = model_path if model_path is not None else temp_path_generator(
     )
     ensure_dir(self.model_path)
     self.local_paths = [
         os.path.join(self.model_path, x.local_name)
         for x in self._google_drive_files
     ]
     for path, x in zip(self.local_paths, self._google_drive_files):
         if not os.path.exists(path):
             download_file_from_google_drive(file_id=x.google_drive_id,
                                             dest_path=path,
                                             verbose=True)
Esempio n. 14
0
    def load(self, model_path=None):

        if model_path is None:
            model_file_name = Constant.OBJECT_DETECTOR['MODEL_NAME']
            temp_path = temp_path_generator()
            ensure_dir(temp_path)
            model_path = f'{temp_path}/{model_file_name}'
            download_file_from_google_drive(file_id=Constant.OBJECT_DETECTOR['MODEL_GOOGLE_ID'], dest_path=model_path)
        # load net
        num_classes = len(VOC_CLASSES) + 1  # +1 for background
        self.model = self._build_ssd('test', 300, num_classes)  # initialize SSD
        if self.device.startswith("cuda"):
            self.model.load_state_dict(torch.load(model_path))
        else:
            self.model.load_state_dict(torch.load(model_path, map_location=lambda storage, loc: storage))
        self.model.eval()
        print('Finished loading model!')

        self.model = self.model.to(self.device)
Esempio n. 15
0
def text_preprocess(x_train):
    """This is the text preprocess main method.

    It takes an raw string, clean it and processing it into tokenlized numpy array.
    """
    if Constant.STORE_PATH == '':
        temp_path = temp_path_generator()
        path = temp_path + '_store'
    else:
        path = Constant.STORE_PATH

    ensure_dir(path)

    x_train = [clean_str(x) for x in x_train]
    x_train, word_index = tokenlize_text(max_seq_length=Constant.MAX_SEQUENCE_LENGTH,
                                         max_num_words=Constant.MAX_NB_WORDS,
                                         x_train=x_train)

    print("generating preprocessing model...")
    x_train = processing(path=path, word_index=word_index, input_length=Constant.MAX_SEQUENCE_LENGTH, x_train=x_train)
    return x_train
Esempio n. 16
0
    def __init__(self,
                 verbose=False,
                 searcher_type=None,
                 path=constant.DEFAULT_SAVE_PATH,
                 resume=False):
        """Initialize the instance.

        The classifier will be loaded from file if the directory in 'path' has a saved classifier.
        Otherwise it would create a new one.
        """
        if has_file(os.path.join(path, 'classifier')) and resume:
            classifier = pickle.load(
                open(os.path.join(path, 'classifier'), 'rb'))
            self.__dict__ = classifier.__dict__
        else:
            self.y_encoder = None
            self.verbose = verbose
            self.searcher = False
            self.searcher_type = searcher_type
            self.path = path
            ensure_dir(path)
Esempio n. 17
0
    def __init__(self, verbose=False, path=None, resume=False, searcher_args=None, augment=None):
        """Initialize the instance.

        The classifier will be loaded from the files in 'path' if parameter 'resume' is True.
        Otherwise it would create a new one.

        Args:
            verbose: A boolean of whether the search process will be printed to stdout.
            path: A string. The path to a directory, where the intermediate results are saved.
            resume: A boolean. If True, the classifier will continue to previous work saved in path.
                Otherwise, the classifier will start a new search.
            augment: A boolean value indicating whether the data needs augmentation. If not define, then it
                will use the value of Constant.DATA_AUGMENTATION which is True by default.

        """
        super().__init__(verbose)
        if searcher_args is None:
            searcher_args = {}

        if path is None:
            path = temp_folder_generator()

        if augment is None:
            augment = Constant.DATA_AUGMENTATION

        if has_file(os.path.join(path, 'classifier')) and resume:
            classifier = pickle_from_file(os.path.join(path, 'classifier'))
            self.__dict__ = classifier.__dict__
            self.path = path
        else:
            self.y_encoder = None
            self.data_transformer = None
            self.verbose = verbose
            self.searcher = False
            self.path = path
            self.searcher_args = searcher_args
            self.augment = augment
            ensure_dir(path)
Esempio n. 18
0
 def load(self, model_path=None):
     temp_path = temp_path_generator()
     ensure_dir(temp_path)
     for model_link, file_path in zip(Constant.FACE_DETECTION_PRETRAINED['PRETRAINED_MODEL_LINKS'],
                                      Constant.FACE_DETECTION_PRETRAINED['FILE_NAMES']):
         download_file(model_link, f'{temp_path}/{file_path}')
Esempio n. 19
0
from keras.datasets import mnist
import os

from pandas import DataFrame
from PIL import Image

from autokeras.utils import ensure_dir

ensure_dir('mnist/train')
ensure_dir('mnist/test')
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# x_train = x_train.reshape(x_train.shape + (1,))
# x_test = x_test.reshape(x_test.shape + (1,))

# file_names = []
# for i in range(len(x_train)):
#     file_name = ("%05d" % (i, )) + '.jpg'
#     Image.fromarray(x_train[i]).save(os.path.join('mnist', 'train', file_name))
#     file_names.append(file_name)
#
# csv_data = {'File Name': file_names, 'Label': y_train}
# DataFrame(csv_data).to_csv('mnist/train/label.csv', index=False)

file_names = []
for i in range(len(x_test)):
    file_name = ("%05d" % (i, )) + '.jpg'
    Image.fromarray(x_test[i]).save(os.path.join('mnist', 'test', file_name))
    file_names.append(file_name)

csv_data = {'File Name': file_names, 'Label': y_test}
DataFrame(csv_data).to_csv('mnist/test/label.csv', index=False)