Esempio n. 1
0
    def test__positions_are_input__are_used_in_analysis(
            self, image_7x7, noise_map_7x7, mask_7x7):
        # If position threshold is input (not None) and positions are input, make the positions part of the lens dataset.

        imaging_7x7 = al.Imaging(
            image=image_7x7,
            noise_map=noise_map_7x7,
            positions=al.GridCoordinates([[(1.0, 1.0), (2.0, 2.0)]]),
        )

        phase_imaging_7x7 = al.PhaseImaging(
            phase_name="test_phase",
            search=mock.MockSearch(),
            settings=al.SettingsPhaseImaging(settings_lens=al.SettingsLens(
                positions_threshold=0.2)),
        )

        phase_imaging_7x7.modify_dataset(dataset=imaging_7x7,
                                         results=mock.MockResults())
        phase_imaging_7x7.modify_settings(dataset=imaging_7x7,
                                          results=mock.MockResults())

        analysis = phase_imaging_7x7.make_analysis(dataset=imaging_7x7,
                                                   mask=mask_7x7,
                                                   results=mock.MockResults())

        assert (analysis.masked_dataset.positions.in_list[0][0] == np.array(
            [1.0, 1.0])).all()
        assert (analysis.masked_dataset.positions.in_list[0][1] == np.array(
            [2.0, 2.0])).all()
        assert analysis.settings.settings_lens.positions_threshold == 0.2

        # If position threshold is input (not None) and but no positions are supplied, raise an error

        with pytest.raises(exc.PhaseException):

            imaging_7x7 = al.Imaging(image=image_7x7,
                                     noise_map=noise_map_7x7,
                                     positions=None)

            phase_imaging_7x7 = al.PhaseImaging(
                phase_name="test_phase",
                search=mock.MockSearch(),
                settings=al.SettingsPhaseImaging(settings_lens=al.SettingsLens(
                    positions_threshold=0.2)),
            )

            phase_imaging_7x7.modify_dataset(dataset=imaging_7x7,
                                             results=mock.MockResults())
            phase_imaging_7x7.modify_settings(dataset=imaging_7x7,
                                              results=mock.MockResults())
Esempio n. 2
0
    def test__positions_are_input__are_used_in_analysis(
            self, image_7x7, noise_map_7x7, mask_7x7):
        # If position threshold is input (not None) and positions are input, make the positions part of the lens dataset.

        imaging_7x7 = al.Imaging(
            image=image_7x7,
            noise_map=noise_map_7x7,
            positions=al.GridIrregularGrouped([[(1.0, 1.0), (2.0, 2.0)]]),
        )

        phase_imaging_7x7 = al.PhaseImaging(
            search=mock.MockSearch("test_phase"),
            settings=al.SettingsPhaseImaging(settings_lens=al.SettingsLens(
                positions_threshold=0.2)),
        )

        phase_imaging_7x7.modify_dataset(dataset=imaging_7x7,
                                         results=mock.MockResults())
        phase_imaging_7x7.modify_settings(dataset=imaging_7x7,
                                          results=mock.MockResults())

        analysis = phase_imaging_7x7.make_analysis(dataset=imaging_7x7,
                                                   mask=mask_7x7,
                                                   results=mock.MockResults())

        assert (analysis.masked_dataset.positions.in_grouped_list[0][0] ==
                np.array([1.0, 1.0])).all()
        assert (analysis.masked_dataset.positions.in_grouped_list[0][1] ==
                np.array([2.0, 2.0])).all()
        assert analysis.settings.settings_lens.positions_threshold == 0.2
def make_imaging_gen(fit):

    data = fit.value(name="data")
    noise_map = fit.value(name="noise_map")
    psf = fit.value(name="psf")
    settings_imaging = fit.value(name="settings_dataset")

    imaging = al.Imaging(
        image=data,
        noise_map=noise_map,
        psf=psf,
        settings=settings_imaging,
        pad_for_convolver=True,
    )

    imaging.apply_settings(settings=settings_imaging)

    return imaging
The individual masked `data`, `noise_map` and `psf` are stored in the database, as opposed to the `Imaging` object, 
which saves of hard-disk space used. Thus, we need to create the `Imaging` object ourselves to inspect it. 
"""
data_gen = agg.values(name="data")
noise_map_gen = agg.values(name="noise_map")
psf_gen = agg.values(name="psf")
settings_imaging_gen = agg.values(name="settings_dataset")

for (data, noise_map, psf, settings_imaging) in zip(data_gen, noise_map_gen,
                                                    psf_gen,
                                                    settings_imaging_gen):

    imaging = al.Imaging(
        image=data,
        noise_map=noise_map,
        psf=psf,
        settings=settings_imaging,
        pad_for_convolver=True,
    )

    imaging_plotter = aplt.ImagingPlotter(imaging=imaging)
    imaging_plotter.subplot_imaging()
"""
__Manual Fit via Generators (Optional / Advanced)__

I now illustrate how one can create fits via generators. There may be occasions where the functionality of 
the `FitImagingAgg` object is insufficient to perform the calculation you require. You can therefore write your own 
generator to do this.

This section is optional, and I advise you only follow it if the `FitImagingAgg` object is sufficient for your use-case.
"""
    def test__uses_auto_update_factor(self, image_7x7, noise_map_7x7, mask_7x7):
        tracer = al.Tracer.from_galaxies(
            galaxies=[al.Galaxy(redshift=0.5), al.Galaxy(redshift=1.0)]
        )

        # Auto positioning is OFF, so use input positions + threshold.

        imaging_7x7 = al.Imaging(
            image=image_7x7,
            noise_map=noise_map_7x7,
            positions=al.GridIrregularGrouped([[(1.0, 1.0)]]),
        )

        phase_imaging_7x7 = al.PhaseImaging(
            search=mock.MockSearch("test_phase"),
            settings=al.SettingsPhaseImaging(
                settings_lens=al.SettingsLens(positions_threshold=0.1)
            ),
        )

        results = mock.MockResults(max_log_likelihood_tracer=tracer)

        phase_imaging_7x7.modify_dataset(dataset=imaging_7x7, results=results)
        phase_imaging_7x7.modify_settings(dataset=imaging_7x7, results=results)

        analysis = phase_imaging_7x7.make_analysis(
            dataset=imaging_7x7, mask=mask_7x7, results=results
        )

        assert analysis.settings.settings_lens.positions_threshold == 0.1

        # Auto positioning is ON, but there are no previous results, so use separate of postiions x positions factor..

        imaging_7x7 = al.Imaging(
            image=image_7x7,
            noise_map=noise_map_7x7,
            positions=al.GridIrregularGrouped([[(1.0, 0.0), (-1.0, 0.0)]]),
        )

        phase_imaging_7x7 = al.PhaseImaging(
            search=mock.MockSearch("test_phase"),
            settings=al.SettingsPhaseImaging(
                settings_lens=al.SettingsLens(
                    positions_threshold=0.1, auto_positions_factor=1.0
                )
            ),
        )

        results = mock.MockResults(max_log_likelihood_tracer=tracer)

        phase_imaging_7x7.modify_dataset(dataset=imaging_7x7, results=results)
        phase_imaging_7x7.modify_settings(dataset=imaging_7x7, results=results)

        analysis = phase_imaging_7x7.make_analysis(
            dataset=imaging_7x7, mask=mask_7x7, results=results
        )

        assert analysis.settings.settings_lens.positions_threshold == 2.0

        # Auto position is ON, and same as above but with a factor of 3.0 which increases the threshold.

        imaging_7x7 = al.Imaging(
            image=image_7x7,
            noise_map=noise_map_7x7,
            positions=al.GridIrregularGrouped([[(1.0, 0.0), (-1.0, 0.0)]]),
        )

        phase_imaging_7x7 = al.PhaseImaging(
            search=mock.MockSearch("test_phase"),
            settings=al.SettingsPhaseImaging(
                settings_lens=al.SettingsLens(
                    positions_threshold=0.2, auto_positions_factor=3.0
                )
            ),
        )

        results = mock.MockResults(
            max_log_likelihood_tracer=tracer, updated_positions_threshold=0.2
        )

        phase_imaging_7x7.modify_dataset(dataset=imaging_7x7, results=results)
        phase_imaging_7x7.modify_settings(dataset=imaging_7x7, results=results)

        analysis = phase_imaging_7x7.make_analysis(
            dataset=imaging_7x7, mask=mask_7x7, results=results
        )

        assert analysis.settings.settings_lens.positions_threshold == 6.0

        # Auto position is ON, and same as above but with a minimum auto positions threshold that rounds the value up.

        imaging_7x7 = al.Imaging(
            image=image_7x7,
            noise_map=noise_map_7x7,
            positions=al.GridIrregularGrouped([[(1.0, 0.0), (-1.0, 0.0)]]),
        )

        phase_imaging_7x7 = al.PhaseImaging(
            search=mock.MockSearch("test_phase"),
            settings=al.SettingsPhaseImaging(
                settings_lens=al.SettingsLens(
                    positions_threshold=0.2,
                    auto_positions_factor=3.0,
                    auto_positions_minimum_threshold=10.0,
                )
            ),
        )

        results = mock.MockResults(
            max_log_likelihood_tracer=tracer, updated_positions_threshold=0.2
        )

        phase_imaging_7x7.modify_dataset(dataset=imaging_7x7, results=results)
        phase_imaging_7x7.modify_settings(dataset=imaging_7x7, results=results)

        analysis = phase_imaging_7x7.make_analysis(
            dataset=imaging_7x7, mask=mask_7x7, results=results
        )

        assert analysis.settings.settings_lens.positions_threshold == 10.0

        # Auto positioning is ON, but positions are None and it cannot find new positions so no threshold.

        imaging_7x7 = al.Imaging(
            image=image_7x7, noise_map=noise_map_7x7, positions=None
        )

        phase_imaging_7x7 = al.PhaseImaging(
            search=mock.MockSearch("test_phase"),
            settings=al.SettingsPhaseImaging(
                settings_lens=al.SettingsLens(auto_positions_factor=1.0)
            ),
        )

        results = mock.MockResults(max_log_likelihood_tracer=tracer)

        phase_imaging_7x7.modify_dataset(dataset=imaging_7x7, results=results)
        phase_imaging_7x7.modify_settings(dataset=imaging_7x7, results=results)

        analysis = phase_imaging_7x7.make_analysis(
            dataset=imaging_7x7, mask=mask_7x7, results=results
        )

        assert analysis.settings.settings_lens.positions_threshold == None
    def test__updates_correct_using_factor(
        self, imaging_7x7, image_7x7, noise_map_7x7, mask_7x7
    ):
        tracer = al.Tracer.from_galaxies(
            galaxies=[al.Galaxy(redshift=0.5), al.Galaxy(redshift=1.0)]
        )

        # Auto positioning is OFF, so use input positions + threshold.

        imaging_7x7 = al.Imaging(
            image=image_7x7,
            noise_map=noise_map_7x7,
            positions=al.GridIrregularGrouped([[(1.0, 1.0)]]),
        )

        phase_imaging_7x7 = al.PhaseImaging(
            search=mock.MockSearch("test_phase"),
            settings=al.SettingsPhaseImaging(
                settings_lens=al.SettingsLens(positions_threshold=0.1)
            ),
        )

        results = mock.MockResults(max_log_likelihood_tracer=tracer)

        phase_imaging_7x7.modify_dataset(dataset=imaging_7x7, results=results)

        analysis = phase_imaging_7x7.make_analysis(
            dataset=imaging_7x7, mask=mask_7x7, results=results
        )

        assert analysis.masked_dataset.positions.in_grouped_list == [[(1.0, 1.0)]]

        # Auto positioning is ON, but there are no previous results, so use input positions.

        imaging_7x7 = al.Imaging(
            image=image_7x7,
            noise_map=noise_map_7x7,
            positions=al.GridIrregularGrouped([[(1.0, 1.0)]]),
        )

        phase_imaging_7x7 = al.PhaseImaging(
            search=mock.MockSearch("test_phase"),
            settings=al.SettingsPhaseImaging(
                settings_lens=al.SettingsLens(
                    positions_threshold=0.2, auto_positions_factor=2.0
                )
            ),
        )

        phase_imaging_7x7.modify_dataset(dataset=imaging_7x7, results=results)

        analysis = phase_imaging_7x7.make_analysis(
            dataset=imaging_7x7, mask=mask_7x7, results=results
        )

        assert analysis.masked_dataset.positions.in_grouped_list == [[(1.0, 1.0)]]

        # Auto positioning is ON, there are previous results so use their new positions and threshold (which is
        # multiplied by the auto_positions_factor). However, only one set of positions is computed from the previous
        # result, to use input positions.

        imaging_7x7 = al.Imaging(
            image=image_7x7,
            noise_map=noise_map_7x7,
            positions=al.GridIrregularGrouped([[(1.0, 1.0)]]),
        )

        phase_imaging_7x7 = al.PhaseImaging(
            search=mock.MockSearch("test_phase"),
            settings=al.SettingsPhaseImaging(
                settings_lens=al.SettingsLens(
                    positions_threshold=0.2, auto_positions_factor=2.0
                )
            ),
        )

        results = mock.MockResults(
            max_log_likelihood_tracer=tracer,
            updated_positions=al.GridIrregularGrouped(grid=[[(2.0, 2.0)]]),
            updated_positions_threshold=0.3,
        )

        phase_imaging_7x7.modify_dataset(dataset=imaging_7x7, results=results)

        analysis = phase_imaging_7x7.make_analysis(
            dataset=imaging_7x7, mask=mask_7x7, results=results
        )

        assert analysis.masked_dataset.positions.in_grouped_list == [[(1.0, 1.0)]]

        # Auto positioning is ON, but the tracer only has a single plane and thus no lensing, so use input positions.

        imaging_7x7 = al.Imaging(
            image=image_7x7,
            noise_map=noise_map_7x7,
            positions=al.GridIrregularGrouped([[(1.0, 1.0)]]),
        )

        phase_imaging_7x7 = al.PhaseImaging(
            search=mock.MockSearch("test_phase"),
            settings=al.SettingsPhaseImaging(
                settings_lens=al.SettingsLens(
                    positions_threshold=0.2, auto_positions_factor=1.0
                )
            ),
        )

        tracer_x1_plane = al.Tracer.from_galaxies(galaxies=[al.Galaxy(redshift=0.5)])

        results = mock.MockResults(
            max_log_likelihood_tracer=tracer_x1_plane,
            updated_positions=al.GridIrregularGrouped(grid=[[(2.0, 2.0), (3.0, 3.0)]]),
            updated_positions_threshold=0.3,
        )

        phase_imaging_7x7.modify_dataset(dataset=imaging_7x7, results=results)

        analysis = phase_imaging_7x7.make_analysis(
            dataset=imaging_7x7, mask=mask_7x7, results=results
        )

        assert analysis.masked_dataset.positions.in_grouped_list == [[(1.0, 1.0)]]

        # Auto positioning is ON, there are previous results so use their new positions and threshold (which is
        # multiplied by the auto_positions_factor). Multiple positions are available so these are now used.

        imaging_7x7 = al.Imaging(
            image=image_7x7,
            noise_map=noise_map_7x7,
            positions=al.GridIrregularGrouped([[(1.0, 1.0)]]),
        )

        phase_imaging_7x7 = al.PhaseImaging(
            search=mock.MockSearch("test_phase"),
            settings=al.SettingsPhaseImaging(
                settings_lens=al.SettingsLens(
                    positions_threshold=0.2, auto_positions_factor=2.0
                )
            ),
        )

        results = mock.MockResults(
            max_log_likelihood_tracer=tracer,
            updated_positions=al.GridIrregularGrouped(grid=[[(2.0, 2.0), (3.0, 3.0)]]),
            updated_positions_threshold=0.3,
        )

        phase_imaging_7x7.modify_dataset(dataset=imaging_7x7, results=results)

        analysis = phase_imaging_7x7.make_analysis(
            dataset=imaging_7x7, mask=mask_7x7, results=results
        )

        assert analysis.masked_dataset.positions.in_grouped_list == [
            [(2.0, 2.0), (3.0, 3.0)]
        ]

        # Auto positioning is Off, but there are previous results with updated positions relative to the input
        # positions, so use those with their positions threshold.

        imaging_7x7 = al.Imaging(
            image=image_7x7,
            noise_map=noise_map_7x7,
            positions=al.GridIrregularGrouped([[(2.0, 2.0)]]),
        )

        phase_imaging_7x7 = al.PhaseImaging(
            search=mock.MockSearch("test_phase"),
            settings=al.SettingsPhaseImaging(
                settings_lens=al.SettingsLens(positions_threshold=0.1)
            ),
        )

        results = mock.MockResults(
            max_log_likelihood_tracer=tracer,
            positions=al.GridIrregularGrouped(grid=[[(3.0, 3.0), (4.0, 4.0)]]),
            updated_positions_threshold=0.3,
        )

        phase_imaging_7x7.modify_dataset(dataset=imaging_7x7, results=results)

        analysis = phase_imaging_7x7.make_analysis(
            dataset=imaging_7x7, mask=mask_7x7, results=results
        )

        assert analysis.masked_dataset.positions.in_grouped_list == [
            [(3.0, 3.0), (4.0, 4.0)]
        ]
imaging_plotter = aplt.ImagingPlotter(imaging=imaging, visuals_2d=visuals_2d)
imaging_plotter.subplot_imaging()

# %%
"""
For the positions to be used in a Phase, we associate them with the `Imaging` data.
 
We also pass the `SettingsPhaseImaging` a new object, `SettingsLens`. This includes the *position_threshold* used 
during modeling to resample inaccurate mass models.
"""

# %%
imaging = al.Imaging(
    image=imaging.image,
    noise_map=imaging.noise_map,
    psf=imaging.psf,
    positions=positions,
)

settings_masked_imaging = al.SettingsMaskedImaging(grid_class=al.Grid,
                                                   sub_size=2)
settings_lens = al.SettingsLens(positions_threshold=2.0)

settings = al.SettingsPhaseImaging(
    settings_masked_imaging=settings_masked_imaging,
    settings_lens=settings_lens)

# %%
"""
We can then tell our phase to use these positions in the analysis.
"""