Esempio n. 1
0
def run(dataset: Dataset, config: TaskConfig):
    log.info("\n**** Decision Tree (sklearn) ****\n")

    is_classification = config.type == 'classification'

    X_train, X_test = impute(dataset.train.X, dataset.test.X)
    y_train, y_test = dataset.train.y, dataset.test.y

    estimator = DecisionTreeClassifier if is_classification else DecisionTreeRegressor
    predictor = estimator(random_state=config.seed, **config.framework_params)

    with Timer() as training:
        predictor.fit(X_train, y_train)
    predictions = predictor.predict(X_test)
    probabilities = predictor.predict_proba(X_test) if is_classification else None

    save_predictions_to_file(dataset=dataset,
                             output_file=config.output_predictions_file,
                             probabilities=probabilities,
                             predictions=predictions,
                             truth=y_test)

    return dict(
        models_count=1,
        training_duration=training.duration
    )
Esempio n. 2
0
def run(dataset, config):
    log.info("\n**** Random Forest (sklearn %s) ****\n", sklearn.__version__)

    is_classification = config.type == 'classification'

    # Impute any missing data (can test using -t 146606)
    X_train, X_test = impute(dataset.train.X_enc, dataset.test.X_enc)
    y_train, y_test = dataset.train.y, dataset.test.y

    log.info(
        "Running RandomForest with a maximum time of {}s on {} cores.".format(
            config.max_runtime_seconds, config.cores))
    log.warning(
        "We completely ignore the requirement to stay within the time limit.")
    log.warning(
        "We completely ignore the advice to optimize towards metric: {}.".
        format(config.metric))

    estimator = RandomForestClassifier if is_classification else RandomForestRegressor
    rfc = estimator(n_jobs=config.cores, **config.framework_params)

    rfc.fit(X_train, y_train)

    predictions = rfc.predict(X_test)
    probabilities = rfc.predict_proba(X_test) if is_classification else None

    return ns(output_file=config.output_predictions_file,
              probabilities=probabilities,
              predictions=predictions,
              truth=y_test,
              target_is_encoded=False)
Esempio n. 3
0
def run(dataset: Dataset, config: TaskConfig):
    log.info("\n**** TPOT ****\n")

    is_classification = config.type == 'classification'
    # Mapping of benchmark metrics to TPOT metrics
    metrics_mapping = dict(acc='accuracy',
                           auc='roc_auc',
                           f1='f1',
                           logloss='neg_log_loss',
                           mae='neg_mean_absolute_error',
                           mse='neg_mean_squared_error',
                           msle='neg_mean_squared_log_error',
                           r2='r2')
    scoring_metric = metrics_mapping[
        config.metric] if config.metric in metrics_mapping else None
    if scoring_metric is None:
        raise ValueError("Performance metric {} not supported.".format(
            config.metric))

    X_train, X_test = impute(dataset.train.X_enc, dataset.test.X_enc)
    y_train, y_test = dataset.train.y_enc, dataset.test.y_enc

    log.info(
        'Running TPOT with a maximum time of %ss on %s cores, optimizing %s.',
        config.max_runtime_seconds, config.cores, scoring_metric)
    runtime_min = (config.max_runtime_seconds / 60)

    estimator = TPOTClassifier if is_classification else TPOTRegressor
    tpot = estimator(n_jobs=config.cores,
                     max_time_mins=runtime_min,
                     scoring=scoring_metric,
                     random_state=config.seed,
                     **config.framework_params)

    with Timer() as training:
        tpot.fit(X_train, y_train)

    log.info('Predicting on the test set.')
    predictions = tpot.predict(X_test)
    try:
        probabilities = tpot.predict_proba(
            X_test) if is_classification else None
    except RuntimeError:
        # TPOT throws a RuntimeError if the optimized pipeline does not support `predict_proba`.
        probabilities = Encoder('one-hot', target=False,
                                encoded_type=float).fit_transform(predictions)

    save_predictions_to_file(dataset=dataset,
                             output_file=config.output_predictions_file,
                             probabilities=probabilities,
                             predictions=predictions,
                             truth=y_test,
                             target_is_encoded=is_classification)

    return dict(models_count=len(tpot.evaluated_individuals_),
                training_duration=training.duration)
Esempio n. 4
0
def run(dataset: Dataset, config: TaskConfig):
    log.info("\n**** Random Forest (sklearn) ****\n")

    is_classification = config.type == 'classification'

    X_train, X_test = impute(dataset.train.X_enc, dataset.test.X_enc)
    y_train, y_test = dataset.train.y_enc, dataset.test.y_enc

    training_params = {
        k: v
        for k, v in config.framework_params.items() if not k.startswith('_')
    }
    n_jobs = config.framework_params.get(
        '_n_jobs', config.cores
    )  # useful to disable multicore, regardless of the dataset config

    log.info(
        "Running RandomForest with a maximum time of {}s on {} cores.".format(
            config.max_runtime_seconds, n_jobs))
    log.warning(
        "We completely ignore the requirement to stay within the time limit.")
    log.warning(
        "We completely ignore the advice to optimize towards metric: {}.".
        format(config.metric))

    estimator = RandomForestClassifier if is_classification else RandomForestRegressor
    rf = estimator(n_jobs=n_jobs, random_state=config.seed, **training_params)

    with Timer() as training:
        rf.fit(X_train, y_train)

    predictions = rf.predict(X_test)
    probabilities = rf.predict_proba(X_test) if is_classification else None

    save_predictions_to_file(dataset=dataset,
                             output_file=config.output_predictions_file,
                             probabilities=probabilities,
                             predictions=predictions,
                             truth=y_test,
                             target_is_encoded=True)

    return dict(models_count=len(rf), training_duration=training.duration)
Esempio n. 5
0
def run(dataset: Dataset, config: TaskConfig):
    log.info("\n**** Oboe ****\n")

    is_classification = config.type == 'classification'
    if not is_classification:
        # regression currently fails (as of 29.01.2019: still under development state by oboe team)
        raise ValueError(
            'Regression is not yet supported (under development).')

    X_train, X_test = impute(dataset.train.X_enc, dataset.test.X_enc)
    y_train, y_test = dataset.train.y_enc, dataset.test.y_enc

    log.info('Running oboe with a maximum time of {}s on {} cores.'.format(
        config.max_runtime_seconds, config.cores))
    log.warning(
        'We completely ignore the advice to optimize towards metric: {}.'.
        format(config.metric))

    aml = AutoLearner(
        p_type='classification' if is_classification else 'regression',
        n_cores=config.cores,
        runtime_limit=config.max_runtime_seconds,
        **config.framework_params)

    with Timer() as training:
        aml.fit(X_train, y_train)

    predictions = aml.predict(X_test).reshape(len(X_test))
    probabilities = Encoder('one-hot', target=False,
                            encoded_type=float).fit_transform(
                                predictions) if is_classification else None

    save_predictions_to_file(dataset=dataset,
                             output_file=config.output_predictions_file,
                             probabilities=probabilities,
                             predictions=predictions,
                             truth=y_test,
                             target_is_encoded=True)

    return dict(models_count=len(aml.get_models()),
                training_duration=training.duration)
Esempio n. 6
0
def run(dataset: Dataset, config: TaskConfig):
    log.info("\n**** Decision Tree (sklearn) ****\n")

    is_classification = config.type == 'classification'

    X_train, X_test = impute(dataset.train.X, dataset.test.X)
    y_train, y_test = dataset.train.y, dataset.test.y

    estimator = DecisionTreeClassifier if is_classification else DecisionTreeRegressor
    predictor = estimator(**config.framework_params)

    predictor.fit(X_train, y_train)
    predictions = predictor.predict(X_test)
    probabilities = predictor.predict_proba(
        X_test) if is_classification else None

    save_predictions_to_file(dataset=dataset,
                             output_file=config.output_predictions_file,
                             probabilities=probabilities,
                             predictions=predictions,
                             truth=y_test)
Esempio n. 7
0
def run(dataset: Dataset, config: TaskConfig):
    log.info("\n**** Random Forest (sklearn) ****\n")

    is_classification = config.type == 'classification'

    # Impute any missing data (can test using -t 146606)
    X_train, X_test = impute(dataset.train.X_enc, dataset.test.X_enc)
    y_train, y_test = dataset.train.y, dataset.test.y

    log.info(
        "Running RandomForest with a maximum time of {}s on {} cores.".format(
            config.max_runtime_seconds, config.cores))
    log.warning(
        "We completely ignore the requirement to stay within the time limit.")
    log.warning(
        "We completely ignore the advice to optimize towards metric: {}.".
        format(config.metric))

    estimator = RandomForestClassifier if is_classification else RandomForestRegressor
    rf = estimator(n_jobs=config.cores,
                   random_state=config.seed,
                   **config.framework_params)

    with Timer() as training:
        rf.fit(X_train, y_train)

    predictions = rf.predict(X_test)
    probabilities = rf.predict_proba(X_test) if is_classification else None

    save_predictions_to_file(dataset=dataset,
                             output_file=config.output_predictions_file,
                             probabilities=probabilities,
                             predictions=predictions,
                             truth=y_test,
                             target_is_encoded=False)

    return dict(models_count=len(rf), training_duration=training.duration)
Esempio n. 8
0
def run(dataset: Dataset, config: TaskConfig):
    log.info("\n**** Hyperopt-sklearn ****\n")

    is_classification = config.type == 'classification'

    default = lambda: 0
    metrics_to_loss_mapping = dict(
        acc=(default, False),  # lambda y, pred: 1.0 - accuracy_score(y, pred)
        auc=(lambda y, pred: 1.0 - roc_auc_score(y, pred), False),
        f1=(lambda y, pred: 1.0 - f1_score(y, pred), False),
        # logloss=(log_loss, True),
        mae=(mean_absolute_error, False),
        mse=(mean_squared_error, False),
        msle=(mean_squared_log_error, False),
        r2=(default, False),  # lambda y, pred: 1.0 - r2_score(y, pred)
    )
    loss_fn, continuous_loss_fn = metrics_to_loss_mapping[
        config.metric] if config.metric in metrics_to_loss_mapping else (None,
                                                                         False)
    if loss_fn is None:
        log.warning("Performance metric %s not supported: defaulting to %s.",
                    config.metric, 'accuracy' if is_classification else 'r2')
    if loss_fn is default:
        loss_fn = None

    training_params = {
        k: v
        for k, v in config.framework_params.items() if not k.startswith('_')
    }

    log.warning("Ignoring cores constraint of %s cores.", config.cores)
    log.info(
        "Running hyperopt-sklearn with a maximum time of %ss on %s cores, optimizing %s.",
        config.max_runtime_seconds, 'all', config.metric)

    X_train, X_test = impute(dataset.train.X_enc, dataset.test.X_enc)
    y_train, y_test = dataset.train.y_enc, dataset.test.y_enc

    if is_classification:
        classifier = any_classifier('clf')
        regressor = None
    else:
        classifier = None
        regressor = any_regressor('rgr')

    estimator = HyperoptEstimator(classifier=classifier,
                                  regressor=regressor,
                                  algo=tpe.suggest,
                                  loss_fn=loss_fn,
                                  continuous_loss_fn=continuous_loss_fn,
                                  trial_timeout=config.max_runtime_seconds,
                                  seed=config.seed,
                                  **training_params)

    with InterruptTimeout(config.max_runtime_seconds * 4 / 3,
                          sig=signal.SIGQUIT):
        with InterruptTimeout(config.max_runtime_seconds,
                              before_interrupt=ft.partial(
                                  kill_proc_tree,
                                  timeout=5,
                                  include_parent=False)):
            with Timer() as training:
                estimator.fit(X_train, y_train)

    predictions = estimator.predict(X_test)

    if is_classification:
        target_values_enc = dataset.target.label_encoder.transform(
            dataset.target.values)
        probabilities = Encoder(
            'one-hot', target=False,
            encoded_type=float).fit(target_values_enc).transform(predictions)
    else:
        probabilities = None

    save_predictions_to_file(dataset=dataset,
                             output_file=config.output_predictions_file,
                             probabilities=probabilities,
                             predictions=predictions,
                             truth=y_test,
                             target_is_encoded=True)

    return dict(models_count=len(estimator.trials),
                training_duration=training.duration)
Esempio n. 9
0
def run(dataset: Dataset, config: TaskConfig):
    log.info("\n**** Tuned Random Forest (sklearn) ****\n")

    is_classification = config.type == 'classification'

    training_params = {
        k: v
        for k, v in config.framework_params.items() if not k.startswith('_')
    }
    tuning_params = config.framework_params.get('_tuning', training_params)
    n_jobs = config.framework_params.get(
        '_n_jobs', config.cores
    )  # useful to disable multicore, regardless of the dataset config

    # Impute any missing data (can test using -t 146606)
    X_train, X_test = impute(dataset.train.X_enc, dataset.test.X_enc)
    y_train, y_test = dataset.train.y_enc, dataset.test.y_enc

    log.info(
        "Running RandomForest with a maximum time of {}s on {} cores.".format(
            config.max_runtime_seconds, n_jobs))

    estimator = RandomForestClassifier if is_classification else RandomForestRegressor
    metric = dict(auc='roc_auc', logloss='neg_log_loss',
                  acc='accuracy')[config.metric]

    n_features = X_train.shape[1]
    default_value = max(1, int(math.sqrt(n_features)))
    below_default = pick_values_uniform(start=1,
                                        end=default_value,
                                        length=5 + 1)[:-1]  # 5 below
    above_default = pick_values_uniform(start=default_value,
                                        end=n_features,
                                        length=10 + 1 -
                                        len(below_default))[1:]  # 5 above
    # Mix up the order of `max_features` to try, so that a fair range is tried even if we have too little time
    # to try all possible values. Order: [sqrt(p), 1, p, random order for remaining values]
    # max_features_to_try = below_default[1:] + above_default[:-1]
    # max_features_values = ([default_value, 1, n_features]
    #                        + random.sample(max_features_to_try, k=len(max_features_to_try)))
    max_features_values = [default_value] + below_default + above_default
    # Define up to how much of total time we spend 'optimizing' `max_features`.
    # (the remainder if used for fitting the final model).
    safety_factor = 0.85
    with stopit.ThreadingTimeout(seconds=int(config.max_runtime_seconds *
                                             safety_factor)):
        log.info("Evaluating multiple values for `max_features`: %s.",
                 max_features_values)
        max_feature_scores = []
        tuning_durations = []
        for i, max_features_value in enumerate(max_features_values):
            log.info("[{:2d}/{:2d}] Evaluating max_features={}".format(
                i + 1, len(max_features_values), max_features_value))
            imputation = Imputer()
            random_forest = estimator(n_jobs=n_jobs,
                                      random_state=config.seed,
                                      max_features=max_features_value,
                                      **tuning_params)
            pipeline = Pipeline(steps=[('preprocessing',
                                        imputation), ('learning',
                                                      random_forest)])
            with Timer() as cv_scoring:
                try:
                    scores = cross_val_score(estimator=pipeline,
                                             X=dataset.train.X_enc,
                                             y=dataset.train.y_enc,
                                             scoring=metric,
                                             cv=5)
                    max_feature_scores.append(
                        (statistics.mean(scores), max_features_value))
                except stopit.utils.TimeoutException as toe:
                    log.error(
                        "Failed CV scoring for max_features=%s : Timeout",
                        max_features_value)
                    tuning_durations.append(
                        (max_features_value, cv_scoring.duration))
                    raise toe
                except Exception as e:
                    log.error("Failed CV scoring for max_features=%s :\n%s",
                              max_features_value, e)
                    log.debug("Exception:", exc_info=True)
            tuning_durations.append((max_features_value, cv_scoring.duration))

    log.info("Tuning scores:\n%s", sorted(max_feature_scores))
    log.info("Tuning durations:\n%s", sorted(tuning_durations))
    _, best_max_features_value = max(
        max_feature_scores) if len(max_feature_scores) > 0 else (math.nan,
                                                                 'auto')
    log.info("Training final model with `max_features={}`.".format(
        best_max_features_value))
    rf = estimator(n_jobs=n_jobs,
                   random_state=config.seed,
                   max_features=best_max_features_value,
                   **training_params)
    with Timer() as training:
        rf.fit(X_train, y_train)

    predictions = rf.predict(X_test)
    probabilities = rf.predict_proba(X_test) if is_classification else None

    save_predictions_to_file(dataset=dataset,
                             output_file=config.output_predictions_file,
                             probabilities=probabilities,
                             predictions=predictions,
                             truth=y_test,
                             target_is_encoded=True)

    return dict(models_count=len(rf),
                training_duration=training.duration +
                sum(map(lambda t: t[1], tuning_durations)))
Esempio n. 10
0
def run(dataset: Dataset, config: TaskConfig):
    log.info("\n**** TPOT ****\n")

    is_classification = config.type == 'classification'
    # Mapping of benchmark metrics to TPOT metrics
    metrics_mapping = dict(acc='accuracy',
                           auc='roc_auc',
                           f1='f1',
                           logloss='neg_log_loss',
                           mae='neg_mean_absolute_error',
                           mse='neg_mean_squared_error',
                           msle='neg_mean_squared_log_error',
                           r2='r2')
    scoring_metric = metrics_mapping[
        config.metric] if config.metric in metrics_mapping else None
    if scoring_metric is None:
        raise ValueError("Performance metric {} not supported.".format(
            config.metric))

    X_train, X_test = impute(dataset.train.X_enc, dataset.test.X_enc)
    y_train, y_test = dataset.train.y_enc, dataset.test.y_enc

    training_params = {
        k: v
        for k, v in config.framework_params.items() if not k.startswith('_')
    }
    n_jobs = config.framework_params.get(
        '_n_jobs', config.cores
    )  # useful to disable multicore, regardless of the dataset config

    log.info(
        'Running TPOT with a maximum time of %ss on %s cores, optimizing %s.',
        config.max_runtime_seconds, n_jobs, scoring_metric)
    runtime_min = (config.max_runtime_seconds / 60)

    estimator = TPOTClassifier if is_classification else TPOTRegressor
    tpot = estimator(n_jobs=n_jobs,
                     max_time_mins=runtime_min,
                     scoring=scoring_metric,
                     random_state=config.seed,
                     **training_params)

    with Timer() as training:
        tpot.fit(X_train, y_train)

    log.debug("All individuals :\n%s",
              list(tpot.evaluated_individuals_.items()))
    models = tpot.pareto_front_fitted_pipelines_
    hall_of_fame = list(
        zip(reversed(tpot._pareto_front.keys), tpot._pareto_front.items))
    models_file = split_path(config.output_predictions_file)
    models_file.extension = '.models.txt'
    models_file = path_from_split(models_file)
    with open(models_file, 'w') as f:
        for m in hall_of_fame:
            pprint.pprint(dict(
                fitness=str(m[0]),
                model=str(m[1]),
                pipeline=models[str(m[1])],
            ),
                          stream=f)

    log.info('Predicting on the test set.')
    predictions = tpot.predict(X_test)
    try:
        probabilities = tpot.predict_proba(
            X_test) if is_classification else None
    except RuntimeError:
        # TPOT throws a RuntimeError if the optimized pipeline does not support `predict_proba`.
        target_values_enc = dataset.target.label_encoder.transform(
            dataset.target.values)
        probabilities = Encoder(
            'one-hot', target=False,
            encoded_type=float).fit(target_values_enc).transform(predictions)

    save_predictions_to_file(dataset=dataset,
                             output_file=config.output_predictions_file,
                             probabilities=probabilities,
                             predictions=predictions,
                             truth=y_test,
                             target_is_encoded=is_classification)

    return dict(models_count=len(tpot.evaluated_individuals_),
                training_duration=training.duration)
Esempio n. 11
0
def run(dataset: Dataset, config: TaskConfig):
    log.info("\n**** Oboe ****\n")

    is_classification = config.type == 'classification'
    if not is_classification:
        # regression currently fails (as of 26.02.2019: still under development state by oboe team)
        raise ValueError(
            'Regression is not yet supported (under development).')

    X_train, X_test = impute(dataset.train.X_enc, dataset.test.X_enc)
    y_train, y_test = dataset.train.y_enc, dataset.test.y_enc

    training_params = {
        k: v
        for k, v in config.framework_params.items() if not k.startswith('_')
    }
    n_cores = config.framework_params.get('_n_cores', config.cores)

    log.info('Running oboe with a maximum time of {}s on {} cores.'.format(
        config.max_runtime_seconds, n_cores))
    log.warning(
        'We completely ignore the advice to optimize towards metric: {}.'.
        format(config.metric))

    aml = AutoLearner(
        p_type='classification' if is_classification else 'regression',
        n_cores=n_cores,
        runtime_limit=config.max_runtime_seconds,
        **training_params)

    aml_models = lambda: [aml.ensemble, *aml.ensemble.base_learners] if len(
        aml.ensemble.base_learners) > 0 else []

    with Timer() as training:
        try:
            aml.fit(X_train, y_train)
        except IndexError as e:
            if len(
                    aml_models()
            ) == 0:  # incorrect handling of some IndexError in oboe if ensemble is empty
                raise NoResultError(
                    "Oboe could not produce any model in the requested time."
                ) from e
            raise e

    predictions = aml.predict(X_test).reshape(len(X_test))

    if is_classification:
        target_values_enc = dataset.target.label_encoder.transform(
            dataset.target.values)
        probabilities = Encoder(
            'one-hot', target=False,
            encoded_type=float).fit(target_values_enc).transform(predictions)
    else:
        probabilities = None

    save_predictions_to_file(dataset=dataset,
                             output_file=config.output_predictions_file,
                             probabilities=probabilities,
                             predictions=predictions,
                             truth=y_test,
                             target_is_encoded=True)

    return dict(models_count=len(aml_models()),
                training_duration=training.duration)