Esempio n. 1
0
def ether_groups(gra, filterlst=()):
    """ Determine the location of ether groups. The locations are
        specified as tuple of idxs indicating the C-O-C atoms
        of the group: (C-idx, O-idx, C-idx).

        :param gra: molecular graph
        :type gra: molecular graph data structure
        :rtype: tuple(int)
    """

    ether_grps = tuple()

    # Determing the indices of all rings in the molecule

    _ring_idxs = rings_atom_keys(gra)

    coc_grps = two_bond_idxs(gra, symb1='C', cent='O', symb2='C')
    for coc_grp in coc_grps:
        c1_idx, o_idx, c2_idx = coc_grp
        if not _ring_idxs:
            ether_grps += ((c1_idx, o_idx, c2_idx), )
        else:
            for idxs in _ring_idxs:
                if not set(coc_grp) <= set(idxs):
                    ether_grps += ((c1_idx, o_idx, c2_idx), )

    ether_grps = _filter_idxs(ether_grps, filterlst=filterlst)

    return ether_grps
Esempio n. 2
0
def _atom_stereo_corrected_geometry(gra, atm_ste_par_dct, geo, geo_idx_dct):
    """ correct the atom stereo parities of a geometry, for a subset of atoms
    """
    ring_atm_keys = set(itertools.chain(*rings_atom_keys(gra)))
    atm_ngb_keys_dct = atoms_neighbor_atom_keys(gra)

    atm_keys = list(atm_ste_par_dct.keys())
    for atm_key in atm_keys:
        par = atm_ste_par_dct[atm_key]
        curr_par = atom_stereo_parity_from_geometry(gra, atm_key, geo,
                                                    geo_idx_dct)

        if curr_par != par:
            atm_ngb_keys = atm_ngb_keys_dct[atm_key]
            # for now, we simply exclude rings from the pivot keys
            # (will not work for stereo atom at the intersection of two rings)
            atm_piv_keys = list(atm_ngb_keys - ring_atm_keys)[:2]
            assert len(atm_piv_keys) == 2
            atm3_key, atm4_key = atm_piv_keys

            # get coordinates
            xyzs = automol.geom.base.coordinates(geo)
            atm_xyz = xyzs[geo_idx_dct[atm_key]]
            atm3_xyz = xyzs[geo_idx_dct[atm3_key]]
            atm4_xyz = xyzs[geo_idx_dct[atm4_key]]

            # do the rotation
            rot_axis = util.vec.unit_bisector(atm3_xyz,
                                              atm4_xyz,
                                              orig_xyz=atm_xyz)

            rot_atm_keys = (
                atom_keys(branch(gra, atm_key, {atm_key, atm3_key}))
                | atom_keys(branch(gra, atm_key, {atm_key, atm4_key})))
            rot_idxs = list(map(geo_idx_dct.__getitem__, rot_atm_keys))

            geo = automol.geom.rotate(geo,
                                      rot_axis,
                                      numpy.pi,
                                      orig_xyz=atm_xyz,
                                      idxs=rot_idxs)

        assert atom_stereo_parity_from_geometry(gra, atm_key, geo,
                                                geo_idx_dct) == par
        gra = set_atom_stereo_parities(gra, {atm_key: par})

    return geo, gra
Esempio n. 3
0
def epoxy_groups(gra):
    """ Determine the location of 1,2-epoxy groups. The locations are
        specified as tuple-of-tuple of idxs indicating the C-O-C atoms
        of the group: (C-idx, O-idx, C-idx).

        :param gra: molecular graph
        :type gra: molecular graph data structure
        :rtype: tuple(int)
    """

    epox_grps = tuple()

    # Determing the indices of all rings in the molecule
    _ring_idxs = rings_atom_keys(gra)

    coc_grps = two_bond_idxs(gra, symb1='C', cent='O', symb2='C')
    for coc_grp in coc_grps:
        c1_idx, o_idx, c2_idx = coc_grp
        if _ring_idxs:
            for idxs in _ring_idxs:
                if set(coc_grp) <= set(idxs):
                    epox_grps += ((c1_idx, o_idx, c2_idx), )

    return epox_grps
Esempio n. 4
0
def smiles(gra, stereo=True, local_stereo=False, res_stereo=False):
    """ SMILES string from graph

        :param gra: molecular graph
        :type gra: automol graph data structure
        :param stereo: Include stereo?
        :type stereo: bool
        :param local_stereo: Is the graph using local stereo assignments? That
            is, are they based on atom keys rather than canonical keys?
        :type local_stereo: bool
        :param res_stereo: allow resonant double-bond stereo?
        :type res_stereo: bool
        :returns: the SMILES string
        :rtype: str
    """
    assert is_connected(gra), (
        "Cannot form connection layer for disconnected graph.")

    if not stereo:
        gra = without_stereo_parities(gra)

    # If not using local stereo assignments, canonicalize the graph first.
    # From this point on, the stereo parities can be assumed to correspond to
    # the neighboring atom keys.
    if not local_stereo:
        gra = canonical(gra)

    # Convert to implicit graph
    gra = implicit(gra)

    # Insert hydrogens necessary for bond stereo
    gra = _insert_stereo_hydrogens(gra)

    # Find a dominant resonance
    rgr = dominant_resonance(gra)

    # Determine atom symbols
    symb_dct = atom_symbols(rgr)

    # Determine atom implicit hydrogens
    nhyd_dct = atom_implicit_hydrogen_valences(rgr)

    # Determine bond orders for this resonance
    bnd_ord_dct = bond_orders(rgr)

    # Find radical sites for this resonance
    rad_atm_keys = radical_atom_keys_from_resonance(rgr)

    # Determine neighbors
    nkeys_dct = atoms_neighbor_atom_keys(rgr)

    # Find stereo parities
    atm_par_dct = dict_.filter_by_value(atom_stereo_parities(rgr),
                                        lambda x: x is not None)
    bnd_par_dct = dict_.filter_by_value(bond_stereo_parities(rgr),
                                        lambda x: x is not None)

    # Remove stereo parities if requested
    if not res_stereo:
        print('before')
        print(bnd_par_dct)
        bnd_par_dct = dict_.filter_by_key(bnd_par_dct,
                                          lambda x: bnd_ord_dct[x] == 2)
        print('after')
        print(bnd_par_dct)
    else:
        raise NotImplementedError("Not yet implemented!")

    def _atom_representation(key, just_seen=None, nkeys=(), closures=()):
        symb = ptab.to_symbol(symb_dct[key])
        nhyd = nhyd_dct[key]

        needs_brackets = key in rad_atm_keys or symb not in ORGANIC_SUBSET

        hyd_rep = f'H{nhyd}' if nhyd > 1 else ('H' if nhyd == 1 else '')
        par_rep = ''

        if key in atm_par_dct:
            needs_brackets = True

            skeys = [just_seen]
            if nhyd:
                assert nhyd == 1
                skeys.append(-numpy.inf)
            if closures:
                skeys.extend(closures)
            skeys.extend(nkeys)

            can_par = atm_par_dct[key]
            smi_par = can_par ^ util.is_odd_permutation(skeys, sorted(skeys))
            par_rep = '@@' if smi_par else '@'

        if needs_brackets:
            rep = f'[{symb}{par_rep}{hyd_rep}]'
        else:
            rep = f'{symb}'

        return rep

    # Get the pool of stereo bonds for the graph and set up a dictionary for
    # storing the ending representation.
    ste_bnd_key_pool = list(bnd_par_dct.keys())
    drep_dct = {}

    def _bond_representation(key, just_seen=None):
        key0 = just_seen
        key1 = key

        # First, handle the bond order
        if key0 is None or key1 is None:
            rep = ''
        else:
            bnd_ord = bnd_ord_dct[frozenset({key0, key1})]
            if bnd_ord == 1:
                rep = ''
            elif bnd_ord == 2:
                rep = '='
            elif bnd_ord == 3:
                rep = '#'
            else:
                raise ValueError("Bond orders greater than 3 not permitted.")

        drep = drep_dct[(key0, key1)] if (key0, key1) in drep_dct else ''

        bnd_key = next((b for b in ste_bnd_key_pool if key1 in b), None)
        if bnd_key is not None:
            # We've encountered a new stereo bond, so remove it from the pool
            ste_bnd_key_pool.remove(bnd_key)

            # Determine the atoms involved
            key2, = bnd_key - {key1}
            nkey1s = set(nkeys_dct[key1]) - {key2}
            nkey2s = set(nkeys_dct[key2]) - {key1}

            nmax1 = max(nkey1s)
            nmax2 = max(nkey2s)

            nkey1 = just_seen if just_seen in nkey1s else nmax1
            nkey2 = nmax2

            # Determine parity
            can_par = bnd_par_dct[bnd_key]
            smi_par = can_par if nkey1 == nmax1 else not can_par

            # Determine bond directions
            drep1 = drep if drep else '/'
            if just_seen in nkey1s:
                drep = drep1
                flip = not smi_par
            else:
                drep_dct[(key1, nkey1)] = drep1
                flip = smi_par

            drep2 = _flip_direction(drep1, flip=flip)

            drep_dct[(key2, nkey2)] = drep2

        rep += drep

        # Second, handle directionality (bond stereo)
        return rep

    # Get the pool of rings for the graph and set up a dictionary for storing
    # their tags. As the SMILES is built, each next ring that is encountered
    # will be given a tag, removed from the pool, and transferred to the tag
    # dictionary.
    rng_pool = list(rings_atom_keys(rgr))
    rng_tag_dct = {}

    def _ring_representation_with_nkeys_and_closures(key, nkeys=()):
        nkeys = nkeys.copy()

        # Check for new rings in the ring pool. If a new ring is found, create
        # a tag, add it to the tags dictionary, and drop it from the rings
        # pool.
        for new_rng in rng_pool:
            if key in new_rng:
                # Choose a neighbor key for SMILES ring closure
                clos_nkey = sorted(set(new_rng) & set(nkeys))[0]

                # Add it to the ring tag dictionary with the current key first
                # and the closure key last
                tag = max(rng_tag_dct.values(), default=0) + 1
                assert tag < 10, (
                    f"Ring tag exceeds 10 for this graph:\n{string(gra)}")
                rng = cycle_ring_atom_key_to_front(new_rng, key, clos_nkey)
                rng_tag_dct[rng] = tag

                # Remove it from the pool of unseen rings
                rng_pool.remove(new_rng)

        tags = []
        closures = []
        for rng, tag in rng_tag_dct.items():
            if key == rng[-1]:
                nkeys.remove(rng[0])
                closures.append(rng[0])
                # Handle the special case where the last ring bond has stereo
                if (rng[-1], rng[0]) in drep_dct:
                    drep = drep_dct[(rng[-1], rng[0])]
                    tags.append(f'{drep}{tag}')
                else:
                    tags.append(f'{tag}')
            if key == rng[0]:
                nkeys.remove(rng[-1])
                closures.append(rng[-1])
                tags.append(f'{tag}')

        rrep = ''.join(map(str, tags))
        return rrep, nkeys, closures

    # Determine neighboring keys
    nkeys_dct_pool = dict_.transform_values(atoms_neighbor_atom_keys(rgr),
                                            sorted)

    def _recurse_smiles(smi, lst, key, just_seen=None):
        nkeys = nkeys_dct_pool.pop(key) if key in nkeys_dct_pool else []

        # Remove keys just seen from the list of neighbors, to avoid doubling
        # back.
        if just_seen in nkeys:
            nkeys.remove(just_seen)

        # Start the SMILES string and connection list. The connection list is
        # used for sorting.
        rrep, nkeys, closures = _ring_representation_with_nkeys_and_closures(
            key, nkeys)
        arep = _atom_representation(key, just_seen, nkeys, closures=closures)
        brep = _bond_representation(key, just_seen)
        smi = f'{brep}{arep}{rrep}'
        lst = [key]

        # Now, extend the layer/list along the neighboring atoms.
        if nkeys:
            # Build sub-strings/lists by recursively calling this function.
            sub_smis = []
            sub_lsts = []
            while nkeys:
                nkey = nkeys.pop(0)
                sub_smi, sub_lst = _recurse_smiles('', [], nkey, just_seen=key)

                sub_smis.append(sub_smi)
                sub_lsts.append(sub_lst)

                # If this is a ring, remove the neighbor on the other side of
                # `key` to prevent repetition as we go around the ring.
                if sub_lst[-1] == key:
                    nkeys.remove(sub_lst[-2])

            # Now, join the sub-layers and lists together.
            # If there is only one neighbor, we joint it as
            #   {arep1}{brep2}{arep2}...
            if len(sub_lsts) == 1:
                sub_smi = sub_smis[0]
                sub_lst = sub_lsts[0]

                # Extend the SMILES string
                smi += f'{sub_smi}'

                # Extend the list
                lst.extend(sub_lst)
            # If there are multiple neighbors, we joint them as
            #   {arep1}({brep2}{arep2}...)({brep3}{arep3}...){brep4}{arep4}...
            else:
                assert len(sub_lsts) > 1

                # Extend the SMILES string
                smi += (''.join(map("({:s})".format, sub_smis[:-1])) +
                        sub_smis[-1])

                # Append the lists of neighboring branches.
                lst.append(sub_lsts)

        return smi, lst

    # If there are terminal atoms, start from the first one
    atm_keys = atom_keys(rgr)
    term_keys = terminal_atom_keys(gra, heavy=False)
    start_key = min(term_keys) if term_keys else min(atm_keys)

    smi, _ = _recurse_smiles('', [], start_key)

    return smi