def test_nc_benchmark_classes_in_exp_range(self):
        train_set = CIFAR100(
            default_dataset_location("cifar100"), train=True, download=True
        )

        test_set = CIFAR100(
            default_dataset_location("cifar100"), train=False, download=True
        )

        benchmark_instance = nc_benchmark(
            train_dataset=train_set,
            test_dataset=test_set,
            n_experiences=5,
            task_labels=False,
            seed=1234,
            shuffle=False,
        )

        cie_data = benchmark_instance.classes_in_exp_range(0, None)
        self.assertEqual(5, len(cie_data))

        for i in range(5):
            expected = set(range(i * 20, (i + 1) * 20))
            self.assertSetEqual(expected, set(cie_data[i]))

        cie_data = benchmark_instance.classes_in_exp_range(1, 4)
        self.assertEqual(3, len(cie_data))

        for i in range(1, 3):
            expected = set(range(i * 20, (i + 1) * 20))
            self.assertSetEqual(expected, set(cie_data[i - 1]))

        random_class_order = list(range(100))
        random.shuffle(random_class_order)
        benchmark_instance = nc_benchmark(
            train_dataset=train_set,
            test_dataset=test_set,
            n_experiences=5,
            task_labels=False,
            seed=1234,
            fixed_class_order=random_class_order,
            shuffle=False,
        )

        cie_data = benchmark_instance.classes_in_exp_range(0, None)
        self.assertEqual(5, len(cie_data))

        for i in range(5):
            expected = set(random_class_order[i * 20 : (i + 1) * 20])
            self.assertSetEqual(expected, set(cie_data[i]))
    def test_nc_benchmark_transformations_advanced(self):
        # Regression for #577
        ds = CIFAR100(
            root=default_dataset_location("cifar100"),
            train=True,
            download=True,
        )
        benchmark = nc_benchmark(
            ds,
            ds,
            n_experiences=10,
            shuffle=True,
            seed=1234,
            task_labels=False,
            train_transform=ToTensor(),
            eval_transform=None,
        )

        ds_train_train = benchmark.train_stream[0].dataset
        self.assertIsInstance(ds_train_train[0][0], Tensor)

        ds_train_eval = benchmark.train_stream[0].dataset.eval()
        self.assertIsInstance(ds_train_eval[0][0], Image)

        ds_test_eval = benchmark.test_stream[0].dataset
        self.assertIsInstance(ds_test_eval[0][0], Image)

        ds_test_train = benchmark.test_stream[0].dataset.train()
        self.assertIsInstance(ds_test_train[0][0], Tensor)
    def test_nc_benchmark_transformations_advanced(self):
        # Regression for #577
        ds = CIFAR100(root=expanduser("~") + "/.avalanche/data/cifar100/",
                      train=True,
                      download=True)
        scenario = nc_benchmark(ds,
                                ds,
                                n_experiences=10,
                                shuffle=True,
                                seed=1234,
                                task_labels=False,
                                train_transform=ToTensor(),
                                eval_transform=None)

        ds_train_train = scenario.train_stream[0].dataset
        self.assertIsInstance(ds_train_train[0][0], Tensor)

        ds_train_eval = scenario.train_stream[0].dataset.eval()
        self.assertIsInstance(ds_train_eval[0][0], Image)

        ds_test_eval = scenario.test_stream[0].dataset
        self.assertIsInstance(ds_test_eval[0][0], Image)

        ds_test_train = scenario.test_stream[0].dataset.train()
        self.assertIsInstance(ds_test_train[0][0], Tensor)
Esempio n. 4
0
    def test_nc_benchmark_transformations_basic(self):
        # Regression for #577
        ds = CIFAR100(root=expanduser("~") + "/.avalanche/data/cifar100/",
                      train=True, download=True)
        ds = AvalancheDataset(ds, transform=ToTensor())

        benchmark = nc_benchmark(
            ds, ds, n_experiences=10, shuffle=True, seed=1234,
            task_labels=False
        )

        exp_0_dataset = benchmark.train_stream[0].dataset
        self.assertIsInstance(exp_0_dataset[0][0], Tensor)
Esempio n. 5
0
def run_experiment(config):
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    torch.manual_seed(config.seed)
    torch.cuda.manual_seed(config.seed)
    np.random.seed(config.seed)
    random.seed(config.seed)
    torch.backends.cudnn.enabled = False
    torch.backends.cudnn.deterministic = True

    per_pixel_mean = get_dataset_per_pixel_mean(
        CIFAR100(
            expanduser("~") + "/.avalanche/data/cifar100/",
            train=True,
            download=True,
            transform=transforms.Compose([transforms.ToTensor()]),
        )
    )

    transforms_group = dict(
        eval=(
            transforms.Compose(
                [
                    transforms.ToTensor(),
                    lambda img_pattern: img_pattern - per_pixel_mean,
                ]
            ),
            None,
        ),
        train=(
            transforms.Compose(
                [
                    transforms.ToTensor(),
                    lambda img_pattern: img_pattern - per_pixel_mean,
                    icarl_cifar100_augment_data,
                ]
            ),
            None,
        ),
    )

    train_set = CIFAR100(
        expanduser("~") + "/.avalanche/data/cifar100/",
        train=True,
        download=True,
    )
    test_set = CIFAR100(
        expanduser("~") + "/.avalanche/data/cifar100/",
        train=False,
        download=True,
    )

    train_set = AvalancheDataset(
        train_set,
        transform_groups=transforms_group,
        initial_transform_group="train",
    )
    test_set = AvalancheDataset(
        test_set,
        transform_groups=transforms_group,
        initial_transform_group="eval",
    )

    scenario = nc_benchmark(
        train_dataset=train_set,
        test_dataset=test_set,
        n_experiences=config.nb_exp,
        task_labels=False,
        seed=config.seed,
        shuffle=False,
        fixed_class_order=config.fixed_class_order,
    )

    evaluator = EvaluationPlugin(
        EpochAccuracy(),
        ExperienceAccuracy(),
        StreamAccuracy(),
        loggers=[InteractiveLogger()],
    )

    model: IcarlNet = make_icarl_net(num_classes=100)
    model.apply(initialize_icarl_net)

    optim = SGD(
        model.parameters(),
        lr=config.lr_base,
        weight_decay=config.wght_decay,
        momentum=0.9,
    )
    sched = LRSchedulerPlugin(
        MultiStepLR(optim, config.lr_milestones, gamma=1.0 / config.lr_factor)
    )

    strategy = ICaRL(
        model.feature_extractor,
        model.classifier,
        optim,
        config.memory_size,
        buffer_transform=transforms.Compose([icarl_cifar100_augment_data]),
        fixed_memory=True,
        train_mb_size=config.batch_size,
        train_epochs=config.epochs,
        eval_mb_size=config.batch_size,
        plugins=[sched],
        device=device,
        evaluator=evaluator,
    )

    for i, exp in enumerate(scenario.train_stream):
        eval_exps = [e for e in scenario.test_stream][: i + 1]
        strategy.train(exp, num_workers=4)
        strategy.eval(eval_exps, num_workers=4)