def process(self, events): events["Electron", "pdgId"] = -11 * events.Electron.charge events["Muon", "pdgId"] = -13 * events.Muon.charge events["leptons"] = ak.concatenate( [events.Electron, events.Muon], axis=1, ) events = events[ak.num(events.leptons) >= 3] pair = ak.argcombinations(events.leptons, 2, fields=["l1", "l2"]) pair = pair[( events.leptons[pair.l1].pdgId == -events.leptons[pair.l2].pdgId)] with np.errstate(invalid="ignore"): pair = pair[ak.singletons( ak.argmin( abs((events.leptons[pair.l1] + events.leptons[pair.l2]).mass - 91.2), axis=1, ))] events = events[ak.num(pair) > 0] pair = pair[ak.num(pair) > 0][:, 0] l3 = ak.local_index(events.leptons) l3 = l3[(l3 != pair.l1) & (l3 != pair.l2)] l3 = l3[ak.argmax(events.leptons[l3].pt, axis=1, keepdims=True)] l3 = events.leptons[l3][:, 0] mt = np.sqrt(2 * l3.pt * events.MET.pt * (1 - np.cos(events.MET.delta_phi(l3)))) return (hist.Hist.new.Reg( 100, 0, 200, name="mt", label=r"$\ell$-MET transverse mass [GeV]").Double().fill(mt))
def test_argcombinations(): array = ak.Array([[0.0, 1.1, 2.2, 3.3], [], [4.4, 5.5, 6.6], [7.7], [8.8, 9.9, 10.0, 11.1, 12.2]]) assert ak.to_list(ak.argcombinations(array, 2, replacement=False)) == [ [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)], [], [(0, 1), (0, 2), (1, 2)], [], [ (0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), ], ]
def process(self, events): # Dataset parameters dataset = events.metadata['dataset'] year = self._samples[dataset]['year'] xsec = self._samples[dataset]['xsec'] sow = self._samples[dataset]['nSumOfWeights'] isData = self._samples[dataset]['isData'] datasets = [ 'SingleMuon', 'SingleElectron', 'EGamma', 'MuonEG', 'DoubleMuon', 'DoubleElectron' ] for d in datasets: if d in dataset: dataset = dataset.split('_')[0] # Initialize objects met = events.MET e = events.Electron mu = events.Muon tau = events.Tau j = events.Jet # Muon selection #mu['isGood'] = isMuonMVA(mu.pt, mu.eta, mu.dxy, mu.dz, mu.miniPFRelIso_all, mu.sip3d, mu.mvaTTH, mu.mediumPromptId, mu.tightCharge, minpt=10) mu['isPres'] = isPresMuon(mu.dxy, mu.dz, mu.sip3d, mu.looseId) mu['isTight'] = isTightMuon(mu.pt, mu.eta, mu.dxy, mu.dz, mu.pfRelIso03_all, mu.sip3d, mu.mvaTTH, mu.mediumPromptId, mu.tightCharge, mu.looseId, minpt=10) mu['isGood'] = mu['isPres'] & mu['isTight'] leading_mu = mu[ak.argmax(mu.pt, axis=-1, keepdims=True)] leading_mu = leading_mu[leading_mu.isGood] mu = mu[mu.isGood] mu_pres = mu[mu.isPres] # Electron selection #e['isGood'] = isElecMVA(e.pt, e.eta, e.dxy, e.dz, e.miniPFRelIso_all, e.sip3d, e.mvaTTH, e.mvaFall17V2Iso, e.lostHits, e.convVeto, e.tightCharge, minpt=10) e['isPres'] = isPresElec(e.pt, e.eta, e.dxy, e.dz, e.miniPFRelIso_all, e.sip3d, e.lostHits, minpt=15) e['isTight'] = isTightElec(e.pt, e.eta, e.dxy, e.dz, e.miniPFRelIso_all, e.sip3d, e.mvaTTH, e.mvaFall17V2Iso, e.lostHits, e.convVeto, e.tightCharge, e.sieie, e.hoe, e.eInvMinusPInv, minpt=15) e['isClean'] = isClean(e, mu, drmin=0.05) e['isGood'] = e['isPres'] & e['isTight'] & e['isClean'] leading_e = e[ak.argmax(e.pt, axis=-1, keepdims=True)] leading_e = leading_e[leading_e.isGood] e = e[e.isGood] e_pres = e[e.isPres & e.isClean] # Tau selection tau['isPres'] = isPresTau(tau.pt, tau.eta, tau.dxy, tau.dz, tau.leadTkPtOverTauPt, tau.idAntiMu, tau.idAntiEle, tau.rawIso, tau.idDecayModeNewDMs, minpt=20) tau['isClean'] = isClean(tau, e_pres, drmin=0.4) & isClean( tau, mu_pres, drmin=0.4) tau['isGood'] = tau['isPres'] # & tau['isClean'], for the moment tau = tau[tau.isGood] nElec = ak.num(e) nMuon = ak.num(mu) nTau = ak.num(tau) twoLeps = (nElec + nMuon) == 2 threeLeps = (nElec + nMuon) == 3 twoElec = (nElec == 2) twoMuon = (nMuon == 2) e0 = e[ak.argmax(e.pt, axis=-1, keepdims=True)] m0 = mu[ak.argmax(mu.pt, axis=-1, keepdims=True)] # Jet selection jetptname = 'pt_nom' if hasattr(j, 'pt_nom') else 'pt' j['isGood'] = isTightJet(getattr(j, jetptname), j.eta, j.jetId, j.neHEF, j.neEmEF, j.chHEF, j.chEmEF, j.nConstituents) #j['isgood'] = isGoodJet(j.pt, j.eta, j.jetId) #j['isclean'] = isClean(j, e, mu) j['isClean'] = isClean(j, e, drmin=0.4) & isClean( j, mu, drmin=0.4) # & isClean(j, tau, drmin=0.4) goodJets = j[(j.isClean) & (j.isGood)] njets = ak.num(goodJets) ht = ak.sum(goodJets.pt, axis=-1) j0 = goodJets[ak.argmax(goodJets.pt, axis=-1, keepdims=True)] #nbtags = ak.num(goodJets[goodJets.btagDeepFlavB > 0.2770]) nbtags = ak.num(goodJets[goodJets.btagDeepB > 0.4941]) ################################################################## ### 2 same-sign leptons ################################################################## # emu singe = e[(nElec == 1) & (nMuon == 1) & (e.pt > -1)] singm = mu[(nElec == 1) & (nMuon == 1) & (mu.pt > -1)] em = ak.cartesian({"e": singe, "m": singm}) emSSmask = (em.e.charge * em.m.charge > 0) emSS = em[emSSmask] nemSS = len(ak.flatten(emSS)) # ee and mumu # pt>-1 to preserve jagged dimensions ee = e[(nElec == 2) & (nMuon == 0) & (e.pt > -1)] mm = mu[(nElec == 0) & (nMuon == 2) & (mu.pt > -1)] eepairs = ak.combinations(ee, 2, fields=["e0", "e1"]) eeSSmask = (eepairs.e0.charge * eepairs.e1.charge > 0) eeonZmask = (np.abs((eepairs.e0 + eepairs.e1).mass - 91.2) < 10) eeoffZmask = (eeonZmask == 0) mmpairs = ak.combinations(mm, 2, fields=["m0", "m1"]) mmSSmask = (mmpairs.m0.charge * mmpairs.m1.charge > 0) mmonZmask = (np.abs((mmpairs.m0 + mmpairs.m1).mass - 91.2) < 10) mmoffZmask = (mmonZmask == 0) eeSSonZ = eepairs[eeSSmask & eeonZmask] eeSSoffZ = eepairs[eeSSmask & eeoffZmask] mmSSonZ = mmpairs[mmSSmask & mmonZmask] mmSSoffZ = mmpairs[mmSSmask & mmoffZmask] neeSS = len(ak.flatten(eeSSonZ)) + len(ak.flatten(eeSSoffZ)) nmmSS = len(ak.flatten(mmSSonZ)) + len(ak.flatten(mmSSoffZ)) print('Same-sign events [ee, emu, mumu] = [%i, %i, %i]' % (neeSS, nemSS, nmmSS)) # Cuts eeSSmask = (ak.num(eeSSmask[eeSSmask]) > 0) mmSSmask = (ak.num(mmSSmask[mmSSmask]) > 0) eeonZmask = (ak.num(eeonZmask[eeonZmask]) > 0) eeoffZmask = (ak.num(eeoffZmask[eeoffZmask]) > 0) mmonZmask = (ak.num(mmonZmask[mmonZmask]) > 0) mmoffZmask = (ak.num(mmoffZmask[mmoffZmask]) > 0) emSSmask = (ak.num(emSSmask[emSSmask]) > 0) ################################################################## ### 3 leptons ################################################################## # eem muon_eem = mu[(nElec == 2) & (nMuon == 1) & (mu.pt > -1)] elec_eem = e[(nElec == 2) & (nMuon == 1) & (e.pt > -1)] ee_eem = ak.combinations(elec_eem, 2, fields=["e0", "e1"]) ee_eemZmask = (ee_eem.e0.charge * ee_eem.e1.charge < 1) & (np.abs( (ee_eem.e0 + ee_eem.e1).mass - 91.2) < 10) ee_eemOffZmask = (ee_eem.e0.charge * ee_eem.e1.charge < 1) & (np.abs( (ee_eem.e0 + ee_eem.e1).mass - 91.2) > 10) ee_eemZmask = (ak.num(ee_eemZmask[ee_eemZmask]) > 0) ee_eemOffZmask = (ak.num(ee_eemOffZmask[ee_eemOffZmask]) > 0) eepair_eem = (ee_eem.e0 + ee_eem.e1) trilep_eem = eepair_eem + muon_eem #ak.cartesian({"e0":ee_eem.e0,"e1":ee_eem.e1, "m":muon_eem}) # mme muon_mme = mu[(nElec == 1) & (nMuon == 2) & (mu.pt > -1)] elec_mme = e[(nElec == 1) & (nMuon == 2) & (e.pt > -1)] mm_mme = ak.combinations(muon_mme, 2, fields=["m0", "m1"]) mm_mmeZmask = (mm_mme.m0.charge * mm_mme.m1.charge < 1) & (np.abs( (mm_mme.m0 + mm_mme.m1).mass - 91.2) < 10) mm_mmeOffZmask = (mm_mme.m0.charge * mm_mme.m1.charge < 1) & (np.abs( (mm_mme.m0 + mm_mme.m1).mass - 91.2) > 10) mm_mmeZmask = (ak.num(mm_mmeZmask[mm_mmeZmask]) > 0) mm_mmeOffZmask = (ak.num(mm_mmeOffZmask[mm_mmeOffZmask]) > 0) mmpair_mme = (mm_mme.m0 + mm_mme.m1) trilep_mme = mmpair_mme + elec_mme mZ_mme = mmpair_mme.mass mZ_eem = eepair_eem.mass m3l_eem = trilep_eem.mass m3l_mme = trilep_mme.mass # eee and mmm eee = e[(nElec == 3) & (nMuon == 0) & (e.pt > -1)] mmm = mu[(nElec == 0) & (nMuon == 3) & (mu.pt > -1)] eee_leps = ak.combinations(eee, 3, fields=["e0", "e1", "e2"]) mmm_leps = ak.combinations(mmm, 3, fields=["m0", "m1", "m2"]) ee_pairs = ak.combinations(eee, 2, fields=["e0", "e1"]) mm_pairs = ak.combinations(mmm, 2, fields=["m0", "m1"]) ee_pairs_index = ak.argcombinations(eee, 2, fields=["e0", "e1"]) mm_pairs_index = ak.argcombinations(mmm, 2, fields=["m0", "m1"]) mmSFOS_pairs = mm_pairs[ (np.abs(mm_pairs.m0.pdgId) == np.abs(mm_pairs.m1.pdgId)) & (mm_pairs.m0.charge != mm_pairs.m1.charge)] offZmask_mm = ak.all( np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2) > 10., axis=1, keepdims=True) & (ak.num(mmSFOS_pairs) > 0) onZmask_mm = ak.any( np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2) < 10., axis=1, keepdims=True) eeSFOS_pairs = ee_pairs[ (np.abs(ee_pairs.e0.pdgId) == np.abs(ee_pairs.e1.pdgId)) & (ee_pairs.e0.charge != ee_pairs.e1.charge)] offZmask_ee = ak.all( np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2) > 10, axis=1, keepdims=True) & (ak.num(eeSFOS_pairs) > 0) onZmask_ee = ak.any( np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2) < 10, axis=1, keepdims=True) # Create masks **for event selection** eeeOnZmask = (ak.num(onZmask_ee[onZmask_ee]) > 0) eeeOffZmask = (ak.num(offZmask_ee[offZmask_ee]) > 0) mmmOnZmask = (ak.num(onZmask_mm[onZmask_mm]) > 0) mmmOffZmask = (ak.num(offZmask_mm[offZmask_mm]) > 0) # Now we need to create masks for the leptons in order to select leptons from the Z boson candidate (in onZ categories) ZeeMask = ak.argmin(np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2), axis=1, keepdims=True) ZmmMask = ak.argmin(np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2), axis=1, keepdims=True) Zee = eeSFOS_pairs[ZeeMask] Zmm = mmSFOS_pairs[ZmmMask] eZ0 = Zee.e0[ak.num(eeSFOS_pairs) > 0] eZ1 = Zee.e1[ak.num(eeSFOS_pairs) > 0] eZ = eZ0 + eZ1 mZ0 = Zmm.m0[ak.num(mmSFOS_pairs) > 0] mZ1 = Zmm.m1[ak.num(mmSFOS_pairs) > 0] mZ = mZ0 + mZ1 mZ_eee = eZ.mass mZ_mmm = mZ.mass # And for the W boson ZmmIndices = mm_pairs_index[ZmmMask] ZeeIndices = ee_pairs_index[ZeeMask] eW = eee[~ZeeIndices.e0 | ~ZeeIndices.e1] mW = mmm[~ZmmIndices.m0 | ~ZmmIndices.m1] triElec = eee_leps.e0 + eee_leps.e1 + eee_leps.e2 triMuon = mmm_leps.m0 + mmm_leps.m1 + mmm_leps.m2 m3l_eee = triElec.mass m3l_mmm = triMuon.mass # Triggers trig_eeSS = passTrigger(events, 'ee', isData, dataset) trig_mmSS = passTrigger(events, 'mm', isData, dataset) trig_emSS = passTrigger(events, 'em', isData, dataset) trig_eee = passTrigger(events, 'eee', isData, dataset) trig_mmm = passTrigger(events, 'mmm', isData, dataset) trig_eem = passTrigger(events, 'eem', isData, dataset) trig_mme = passTrigger(events, 'mme', isData, dataset) # MET filters # Weights genw = np.ones_like( events['MET_pt']) if isData else events['genWeight'] weights = coffea.analysis_tools.Weights(len(events)) weights.add('norm', genw if isData else (xsec / sow) * genw) eftweights = events['EFTfitCoefficients'] if hasattr( events, "EFTfitCoefficients") else [] # Selections and cuts selections = PackedSelection() channels2LSS = ['eeSSonZ', 'eeSSoffZ', 'mmSSonZ', 'mmSSoffZ', 'emSS'] selections.add('eeSSonZ', (eeonZmask) & (eeSSmask) & (trig_eeSS)) selections.add('eeSSoffZ', (eeoffZmask) & (eeSSmask) & (trig_eeSS)) selections.add('mmSSonZ', (mmonZmask) & (mmSSmask) & (trig_mmSS)) selections.add('mmSSoffZ', (mmoffZmask) & (mmSSmask) & (trig_mmSS)) selections.add('emSS', (emSSmask) & (trig_emSS)) channels3L = ['eemSSonZ', 'eemSSoffZ', 'mmeSSonZ', 'mmeSSoffZ'] selections.add('eemSSonZ', (ee_eemZmask) & (trig_eem)) selections.add('eemSSoffZ', (ee_eemOffZmask) & (trig_eem)) selections.add('mmeSSonZ', (mm_mmeZmask) & (trig_mme)) selections.add('mmeSSoffZ', (mm_mmeOffZmask) & (trig_mme)) channels3L += ['eeeSSonZ', 'eeeSSoffZ', 'mmmSSonZ', 'mmmSSoffZ'] selections.add('eeeSSonZ', (eeeOnZmask) & (trig_eee)) selections.add('eeeSSoffZ', (eeeOffZmask) & (trig_eee)) selections.add('mmmSSonZ', (mmmOnZmask) & (trig_mmm)) selections.add('mmmSSoffZ', (mmmOffZmask) & (trig_mmm)) levels = ['base', '2jets', '4jets', '4j1b', '4j2b'] selections.add('base', (nElec + nMuon >= 2)) selections.add('2jets', (njets >= 2)) selections.add('4jets', (njets >= 4)) selections.add('4j1b', (njets >= 4) & (nbtags >= 1)) selections.add('4j2b', (njets >= 4) & (nbtags >= 2)) # Variables invMass_eeSSonZ = (eeSSonZ.e0 + eeSSonZ.e1).mass invMass_eeSSoffZ = (eeSSoffZ.e0 + eeSSoffZ.e1).mass invMass_mmSSonZ = (mmSSonZ.m0 + mmSSonZ.m1).mass invMass_mmSSoffZ = (mmSSoffZ.m0 + mmSSoffZ.m1).mass invMass_emSS = (emSS.e + emSS.m).mass varnames = {} varnames['met'] = met.pt varnames['ht'] = ht varnames['njets'] = njets varnames['nbtags'] = nbtags varnames['invmass'] = { 'eeSSonZ': invMass_eeSSonZ, 'eeSSoffZ': invMass_eeSSoffZ, 'mmSSonZ': invMass_mmSSonZ, 'mmSSoffZ': invMass_mmSSoffZ, 'emSS': invMass_emSS, 'eemSSonZ': mZ_eem, 'eemSSoffZ': mZ_eem, 'mmeSSonZ': mZ_mme, 'mmeSSoffZ': mZ_mme, 'eeeSSonZ': mZ_eee, 'eeeSSoffZ': mZ_eee, 'mmmSSonZ': mZ_mmm, 'mmmSSoffZ': mZ_mmm, } varnames['m3l'] = { 'eemSSonZ': m3l_eem, 'eemSSoffZ': m3l_eem, 'mmeSSonZ': m3l_mme, 'mmeSSoffZ': m3l_mme, 'eeeSSonZ': m3l_eee, 'eeeSSoffZ': m3l_eee, 'mmmSSonZ': m3l_mmm, 'mmmSSoffZ': m3l_mmm, } varnames['e0pt'] = e0.pt varnames['e0eta'] = e0.eta varnames['m0pt'] = m0.pt varnames['m0eta'] = m0.eta varnames['j0pt'] = j0.pt varnames['j0eta'] = j0.eta varnames['counts'] = np.ones_like(events.MET.pt) # fill Histos hout = self.accumulator.identity() allweights = weights.weight().flatten( ) # Why does it not complain about .flatten() here? hout['SumOfEFTweights'].fill(eftweights, sample=dataset, SumOfEFTweights=varnames['counts'], weight=allweights) for var, v in varnames.items(): for ch in channels2LSS + channels3L: for lev in levels: weight = weights.weight() cuts = [ch] + [lev] cut = selections.all(*cuts) weights_flat = weight[cut].flatten( ) # Why does it not complain about .flatten() here? weights_ones = np.ones_like(weights_flat, dtype=np.int) eftweightsvalues = eftweights[cut] if len( eftweights) > 0 else [] if var == 'invmass': if ch in ['eeeSSoffZ', 'mmmSSoffZ']: continue elif ch in ['eeeSSonZ', 'mmmSSonZ']: continue #values = v[ch] else: values = ak.flatten(v[ch][cut]) hout['invmass'].fill(sample=dataset, channel=ch, cut=lev, invmass=values, weight=weights_flat) elif var == 'm3l': if ch in [ 'eeSSonZ', 'eeSSoffZ', 'mmSSonZ', 'mmSSoffZ', 'emSS', 'eeeSSoffZ', 'mmmSSoffZ', 'eeeSSonZ', 'mmmSSonZ' ]: continue values = ak.flatten(v[ch][cut]) hout['m3l'].fill(eftweightsvalues, sample=dataset, channel=ch, cut=lev, m3l=values, weight=weights_flat) else: values = v[cut] if var == 'ht': hout[var].fill(eftweightsvalues, ht=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat) elif var == 'met': hout[var].fill(eftweightsvalues, met=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat) elif var == 'njets': hout[var].fill(eftweightsvalues, njets=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat) elif var == 'nbtags': hout[var].fill(eftweightsvalues, nbtags=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat) elif var == 'counts': hout[var].fill(counts=values, sample=dataset, channel=ch, cut=lev, weight=weights_ones) elif var == 'j0eta': if lev == 'base': continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill(eftweightsvalues, j0eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat) elif var == 'e0pt': if ch in [ 'mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ', 'mmmSSonZ' ]: continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill( eftweightsvalues, e0pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat ) # Crashing here, not sure why. Related to values? elif var == 'm0pt': if ch in [ 'eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ', 'eeeSSonZ' ]: continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill(eftweightsvalues, m0pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat) elif var == 'e0eta': if ch in [ 'mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ', 'mmmSSonZ' ]: continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill(eftweightsvalues, e0eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat) elif var == 'm0eta': if ch in [ 'eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ', 'eeeSSonZ' ]: continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill(eftweightsvalues, m0eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat) elif var == 'j0pt': if lev == 'base': continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill(eftweightsvalues, j0pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat) return hout
def process(self, events): # Dataset parameters dataset = events.metadata['dataset'] histAxisName = self._samples[dataset]['histAxisName'] year = self._samples[dataset]['year'] xsec = self._samples[dataset]['xsec'] sow = self._samples[dataset]['nSumOfWeights'] isData = self._samples[dataset]['isData'] datasets = [ 'SingleMuon', 'SingleElectron', 'EGamma', 'MuonEG', 'DoubleMuon', 'DoubleElectron' ] for d in datasets: if d in dataset: dataset = dataset.split('_')[0] # Initialize objects met = events.MET e = events.Electron mu = events.Muon tau = events.Tau j = events.Jet # Muon selection mu['isPres'] = isPresMuon(mu.dxy, mu.dz, mu.sip3d, mu.looseId) mu['isTight'] = isTightMuon(mu.pt, mu.eta, mu.dxy, mu.dz, mu.pfRelIso03_all, mu.sip3d, mu.mvaTTH, mu.mediumPromptId, mu.tightCharge, mu.looseId, minpt=10) mu['isGood'] = mu['isPres'] & mu['isTight'] leading_mu = mu[ak.argmax(mu.pt, axis=-1, keepdims=True)] leading_mu = leading_mu[leading_mu.isGood] mu = mu[mu.isGood] mu_pres = mu[mu.isPres] # Electron selection e['isPres'] = isPresElec(e.pt, e.eta, e.dxy, e.dz, e.miniPFRelIso_all, e.sip3d, e.lostHits, minpt=15) e['isTight'] = isTightElec(e.pt, e.eta, e.dxy, e.dz, e.miniPFRelIso_all, e.sip3d, e.mvaTTH, e.mvaFall17V2Iso, e.lostHits, e.convVeto, e.tightCharge, e.sieie, e.hoe, e.eInvMinusPInv, minpt=15) e['isClean'] = isClean(e, mu, drmin=0.05) e['isGood'] = e['isPres'] & e['isTight'] & e['isClean'] leading_e = e[ak.argmax(e.pt, axis=-1, keepdims=True)] leading_e = leading_e[leading_e.isGood] e = e[e.isGood] e_pres = e[e.isPres & e.isClean] # Tau selection tau['isPres'] = isPresTau(tau.pt, tau.eta, tau.dxy, tau.dz, tau.leadTkPtOverTauPt, tau.idAntiMu, tau.idAntiEle, tau.rawIso, tau.idDecayModeNewDMs, minpt=20) tau['isClean'] = isClean(tau, e_pres, drmin=0.4) & isClean( tau, mu_pres, drmin=0.4) tau['isGood'] = tau['isPres'] # & tau['isClean'], for the moment tau = tau[tau.isGood] nElec = ak.num(e) nMuon = ak.num(mu) nTau = ak.num(tau) twoLeps = (nElec + nMuon) == 2 threeLeps = (nElec + nMuon) == 3 twoElec = (nElec == 2) twoMuon = (nMuon == 2) e0 = e[ak.argmax(e.pt, axis=-1, keepdims=True)] m0 = mu[ak.argmax(mu.pt, axis=-1, keepdims=True)] # Attach the lepton SFs to the electron and muons collections AttachElectronSF(e, year=year) AttachMuonSF(mu, year=year) # Create a lepton (muon+electron) collection and calculate a per event lepton SF leps = ak.concatenate([e, mu], axis=-1) events['lepSF_nom'] = ak.prod(leps.sf_nom, axis=-1) events['lepSF_hi'] = ak.prod(leps.sf_hi, axis=-1) events['lepSF_lo'] = ak.prod(leps.sf_lo, axis=-1) # Jet selection jetptname = 'pt_nom' if hasattr(j, 'pt_nom') else 'pt' ### Jet energy corrections if not isData: j["pt_raw"] = (1 - j.rawFactor) * j.pt j["mass_raw"] = (1 - j.rawFactor) * j.mass j["pt_gen"] = ak.values_astype(ak.fill_none(j.matched_gen.pt, 0), np.float32) j["rho"] = ak.broadcast_arrays(events.fixedGridRhoFastjetAll, j.pt)[0] events_cache = events.caches[0] corrected_jets = jet_factory.build(j, lazy_cache=events_cache) #print('jet pt: ',j.pt) #print('cor pt: ',corrected_jets.pt) #print('jes up: ',corrected_jets.JES_jes.up.pt) #print('jes down: ',corrected_jets.JES_jes.down.pt) #print(ak.fields(corrected_jets)) ''' # SYSTEMATICS jets = corrected_jets if(self.jetSyst == 'JERUp'): jets = corrected_jets.JER.up elif(self.jetSyst == 'JERDown'): jets = corrected_jets.JER.down elif(self.jetSyst == 'JESUp'): jets = corrected_jets.JES_jes.up elif(self.jetSyst == 'JESDown'): jets = corrected_jets.JES_jes.down ''' j['isGood'] = isTightJet(getattr(j, jetptname), j.eta, j.jetId, j.neHEF, j.neEmEF, j.chHEF, j.chEmEF, j.nConstituents) #j['isgood'] = isGoodJet(j.pt, j.eta, j.jetId) #j['isclean'] = isClean(j, e, mu) j['isClean'] = isClean(j, e, drmin=0.4) & isClean( j, mu, drmin=0.4) # & isClean(j, tau, drmin=0.4) goodJets = j[(j.isClean) & (j.isGood)] njets = ak.num(goodJets) ht = ak.sum(goodJets.pt, axis=-1) j0 = goodJets[ak.argmax(goodJets.pt, axis=-1, keepdims=True)] #nbtags = ak.num(goodJets[goodJets.btagDeepFlavB > 0.2770]) # Loose DeepJet WP if year == 2017: btagwpl = 0.0532 #WP loose else: btagwpl = 0.0490 #WP loose isBtagJetsLoose = (goodJets.btagDeepB > btagwpl) isNotBtagJetsLoose = np.invert(isBtagJetsLoose) nbtagsl = ak.num(goodJets[isBtagJetsLoose]) # Medium DeepJet WP if year == 2017: btagwpm = 0.3040 #WP medium else: btagwpm = 0.2783 #WP medium isBtagJetsMedium = (goodJets.btagDeepB > btagwpm) isNotBtagJetsMedium = np.invert(isBtagJetsMedium) nbtagsm = ak.num(goodJets[isBtagJetsMedium]) # Btag SF following 1a) in https://twiki.cern.ch/twiki/bin/viewauth/CMS/BTagSFMethods btagSF = np.ones_like(ht) btagSFUp = np.ones_like(ht) btagSFDo = np.ones_like(ht) if not isData: pt = goodJets.pt abseta = np.abs(goodJets.eta) flav = goodJets.hadronFlavour bJetSF = GetBTagSF(abseta, pt, flav) bJetSFUp = GetBTagSF(abseta, pt, flav, sys=1) bJetSFDo = GetBTagSF(abseta, pt, flav, sys=-1) bJetEff = GetBtagEff(abseta, pt, flav, year) bJetEff_data = bJetEff * bJetSF bJetEff_dataUp = bJetEff * bJetSFUp bJetEff_dataDo = bJetEff * bJetSFDo pMC = ak.prod(bJetEff[isBtagJetsMedium], axis=-1) * ak.prod( (1 - bJetEff[isNotBtagJetsMedium]), axis=-1) pData = ak.prod(bJetEff_data[isBtagJetsMedium], axis=-1) * ak.prod( (1 - bJetEff_data[isNotBtagJetsMedium]), axis=-1) pDataUp = ak.prod( bJetEff_dataUp[isBtagJetsMedium], axis=-1) * ak.prod( (1 - bJetEff_dataUp[isNotBtagJetsMedium]), axis=-1) pDataDo = ak.prod( bJetEff_dataDo[isBtagJetsMedium], axis=-1) * ak.prod( (1 - bJetEff_dataDo[isNotBtagJetsMedium]), axis=-1) pMC = ak.where(pMC == 0, 1, pMC) # removeing zeroes from denominator... btagSF = pData / pMC btagSFUp = pDataUp / pMC btagSFDo = pDataUp / pMC ################################################################## ### 2 same-sign leptons ################################################################## # emu singe = e[(nElec == 1) & (nMuon == 1) & (e.pt > -1)] singm = mu[(nElec == 1) & (nMuon == 1) & (mu.pt > -1)] em = ak.cartesian({"e": singe, "m": singm}) emSSmask = (em.e.charge * em.m.charge > 0) emSS = em[emSSmask] nemSS = len(ak.flatten(emSS)) # ee and mumu # pt>-1 to preserve jagged dimensions ee = e[(nElec == 2) & (nMuon == 0) & (e.pt > -1)] mm = mu[(nElec == 0) & (nMuon == 2) & (mu.pt > -1)] sumcharge = ak.sum(e.charge, axis=-1) + ak.sum(mu.charge, axis=-1) eepairs = ak.combinations(ee, 2, fields=["e0", "e1"]) eeSSmask = (eepairs.e0.charge * eepairs.e1.charge > 0) eeonZmask = (np.abs((eepairs.e0 + eepairs.e1).mass - 91.2) < 10) eeoffZmask = (eeonZmask == 0) mmpairs = ak.combinations(mm, 2, fields=["m0", "m1"]) mmSSmask = (mmpairs.m0.charge * mmpairs.m1.charge > 0) mmonZmask = (np.abs((mmpairs.m0 + mmpairs.m1).mass - 91.2) < 10) mmoffZmask = (mmonZmask == 0) eeSSonZ = eepairs[eeSSmask & eeonZmask] eeSSoffZ = eepairs[eeSSmask & eeoffZmask] mmSSonZ = mmpairs[mmSSmask & mmonZmask] mmSSoffZ = mmpairs[mmSSmask & mmoffZmask] neeSS = len(ak.flatten(eeSSonZ)) + len(ak.flatten(eeSSoffZ)) nmmSS = len(ak.flatten(mmSSonZ)) + len(ak.flatten(mmSSoffZ)) print('Same-sign events [ee, emu, mumu] = [%i, %i, %i]' % (neeSS, nemSS, nmmSS)) # Cuts eeSSmask = (ak.num(eeSSmask[eeSSmask]) > 0) mmSSmask = (ak.num(mmSSmask[mmSSmask]) > 0) eeonZmask = (ak.num(eeonZmask[eeonZmask]) > 0) eeoffZmask = (ak.num(eeoffZmask[eeoffZmask]) > 0) mmonZmask = (ak.num(mmonZmask[mmonZmask]) > 0) mmoffZmask = (ak.num(mmoffZmask[mmoffZmask]) > 0) emSSmask = (ak.num(emSSmask[emSSmask]) > 0) ################################################################## ### 3 leptons ################################################################## # eem muon_eem = mu[(nElec == 2) & (nMuon == 1) & (mu.pt > -1)] elec_eem = e[(nElec == 2) & (nMuon == 1) & (e.pt > -1)] ee_eem = ak.combinations(elec_eem, 2, fields=["e0", "e1"]) ee_eemZmask = (ee_eem.e0.charge * ee_eem.e1.charge < 1) & (np.abs( (ee_eem.e0 + ee_eem.e1).mass - 91.2) < 10) ee_eemOffZmask = (ee_eem.e0.charge * ee_eem.e1.charge < 1) & (np.abs( (ee_eem.e0 + ee_eem.e1).mass - 91.2) > 10) ee_eemZmask = (ak.num(ee_eemZmask[ee_eemZmask]) > 0) ee_eemOffZmask = (ak.num(ee_eemOffZmask[ee_eemOffZmask]) > 0) eepair_eem = (ee_eem.e0 + ee_eem.e1) trilep_eem = eepair_eem + muon_eem #ak.cartesian({"e0":ee_eem.e0,"e1":ee_eem.e1, "m":muon_eem}) # mme muon_mme = mu[(nElec == 1) & (nMuon == 2) & (mu.pt > -1)] elec_mme = e[(nElec == 1) & (nMuon == 2) & (e.pt > -1)] mm_mme = ak.combinations(muon_mme, 2, fields=["m0", "m1"]) mm_mmeZmask = (mm_mme.m0.charge * mm_mme.m1.charge < 1) & (np.abs( (mm_mme.m0 + mm_mme.m1).mass - 91.2) < 10) mm_mmeOffZmask = (mm_mme.m0.charge * mm_mme.m1.charge < 1) & (np.abs( (mm_mme.m0 + mm_mme.m1).mass - 91.2) > 10) mm_mmeZmask = (ak.num(mm_mmeZmask[mm_mmeZmask]) > 0) mm_mmeOffZmask = (ak.num(mm_mmeOffZmask[mm_mmeOffZmask]) > 0) mmpair_mme = (mm_mme.m0 + mm_mme.m1) trilep_mme = mmpair_mme + elec_mme mZ_mme = mmpair_mme.mass mZ_eem = eepair_eem.mass m3l_eem = trilep_eem.mass m3l_mme = trilep_mme.mass # eee and mmm eee = e[(nElec == 3) & (nMuon == 0) & (e.pt > -1)] mmm = mu[(nElec == 0) & (nMuon == 3) & (mu.pt > -1)] eee_leps = ak.combinations(eee, 3, fields=["e0", "e1", "e2"]) mmm_leps = ak.combinations(mmm, 3, fields=["m0", "m1", "m2"]) ee_pairs = ak.combinations(eee, 2, fields=["e0", "e1"]) mm_pairs = ak.combinations(mmm, 2, fields=["m0", "m1"]) ee_pairs_index = ak.argcombinations(eee, 2, fields=["e0", "e1"]) mm_pairs_index = ak.argcombinations(mmm, 2, fields=["m0", "m1"]) mmSFOS_pairs = mm_pairs[ (np.abs(mm_pairs.m0.pdgId) == np.abs(mm_pairs.m1.pdgId)) & (mm_pairs.m0.charge != mm_pairs.m1.charge)] offZmask_mm = ak.all( np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2) > 10., axis=1, keepdims=True) & (ak.num(mmSFOS_pairs) > 0) onZmask_mm = ak.any( np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2) < 10., axis=1, keepdims=True) eeSFOS_pairs = ee_pairs[ (np.abs(ee_pairs.e0.pdgId) == np.abs(ee_pairs.e1.pdgId)) & (ee_pairs.e0.charge != ee_pairs.e1.charge)] offZmask_ee = ak.all( np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2) > 10, axis=1, keepdims=True) & (ak.num(eeSFOS_pairs) > 0) onZmask_ee = ak.any( np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2) < 10, axis=1, keepdims=True) # Create masks **for event selection** eeeOnZmask = (ak.num(onZmask_ee[onZmask_ee]) > 0) eeeOffZmask = (ak.num(offZmask_ee[offZmask_ee]) > 0) mmmOnZmask = (ak.num(onZmask_mm[onZmask_mm]) > 0) mmmOffZmask = (ak.num(offZmask_mm[offZmask_mm]) > 0) # Now we need to create masks for the leptons in order to select leptons from the Z boson candidate (in onZ categories) ZeeMask = ak.argmin(np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2), axis=1, keepdims=True) ZmmMask = ak.argmin(np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2), axis=1, keepdims=True) Zee = eeSFOS_pairs[ZeeMask] Zmm = mmSFOS_pairs[ZmmMask] eZ0 = Zee.e0[ak.num(eeSFOS_pairs) > 0] eZ1 = Zee.e1[ak.num(eeSFOS_pairs) > 0] eZ = eZ0 + eZ1 mZ0 = Zmm.m0[ak.num(mmSFOS_pairs) > 0] mZ1 = Zmm.m1[ak.num(mmSFOS_pairs) > 0] mZ = mZ0 + mZ1 mZ_eee = eZ.mass mZ_mmm = mZ.mass # And for the W boson ZmmIndices = mm_pairs_index[ZmmMask] ZeeIndices = ee_pairs_index[ZeeMask] eW = eee[~ZeeIndices.e0 | ~ZeeIndices.e1] mW = mmm[~ZmmIndices.m0 | ~ZmmIndices.m1] triElec = eee_leps.e0 + eee_leps.e1 + eee_leps.e2 triMuon = mmm_leps.m0 + mmm_leps.m1 + mmm_leps.m2 m3l_eee = triElec.mass m3l_mmm = triMuon.mass ################################################################## ### >=4 leptons ################################################################## # 4lep cat is4lmask = ((nElec + nMuon) >= 4) muon_4l = mu[(is4lmask) & (mu.pt > -1)] elec_4l = e[(is4lmask) & (e.pt > -1)] # selecting 4 leading leptons leptons = ak.concatenate([e, mu], axis=-1) leptons_sorted = leptons[ak.argsort(leptons.pt, axis=-1, ascending=False)] lep4l = leptons_sorted[:, 0:4] e4l = lep4l[abs(lep4l.pdgId) == 11] mu4l = lep4l[abs(lep4l.pdgId) == 13] nElec4l = ak.num(e4l) nMuon4l = ak.num(mu4l) # Triggers trig_eeSS = passTrigger(events, 'ee', isData, dataset) trig_mmSS = passTrigger(events, 'mm', isData, dataset) trig_emSS = passTrigger(events, 'em', isData, dataset) trig_eee = passTrigger(events, 'eee', isData, dataset) trig_mmm = passTrigger(events, 'mmm', isData, dataset) trig_eem = passTrigger(events, 'eem', isData, dataset) trig_mme = passTrigger(events, 'mme', isData, dataset) trig_4l = triggerFor4l(events, nMuon, nElec, isData, dataset) # MET filters # Weights genw = np.ones_like(events['event']) if ( isData or len(self._wc_names_lst) > 0) else events['genWeight'] ### We need weights for: normalization, lepSF, triggerSF, pileup, btagSF... weights = {} for r in [ 'all', 'ee', 'mm', 'em', 'eee', 'mmm', 'eem', 'mme', 'eeee', 'eeem', 'eemm', 'mmme', 'mmmm' ]: # weights[r] = coffea.analysis_tools.Weights(len(events)) weights[r] = coffea.analysis_tools.Weights(len(events), storeIndividual=True) if len(self._wc_names_lst) > 0: sow = np.ones_like( sow ) # Not valid in nanoAOD for EFT samples, MUST use SumOfEFTweights at analysis level weights[r].add('norm', genw if isData else (xsec / sow) * genw) weights[r].add('btagSF', btagSF, btagSFUp, btagSFDo) weights[r].add('lepSF', events.lepSF_nom, events.lepSF_hi, events.lepSF_lo) # Extract the EFT quadratic coefficients and optionally use them to calculate the coefficients on the w**2 quartic function # eft_coeffs is never Jagged so convert immediately to numpy for ease of use. eft_coeffs = ak.to_numpy(events['EFTfitCoefficients']) if hasattr( events, "EFTfitCoefficients") else None if eft_coeffs is not None: # Check to see if the ordering of WCs for this sample matches what want if self._samples[dataset]['WCnames'] != self._wc_names_lst: eft_coeffs = efth.remap_coeffs( self._samples[dataset]['WCnames'], self._wc_names_lst, eft_coeffs) eft_w2_coeffs = efth.calc_w2_coeffs(eft_coeffs, self._dtype) if ( self._do_errors and eft_coeffs is not None) else None # Selections and cuts selections = PackedSelection() #(dtype='uint64') channels2LSS = ['eeSSonZ', 'eeSSoffZ', 'mmSSonZ', 'mmSSoffZ', 'emSS'] selections.add('eeSSonZ', (eeonZmask) & (eeSSmask) & (trig_eeSS)) selections.add('eeSSoffZ', (eeoffZmask) & (eeSSmask) & (trig_eeSS)) selections.add('mmSSonZ', (mmonZmask) & (mmSSmask) & (trig_mmSS)) selections.add('mmSSoffZ', (mmoffZmask) & (mmSSmask) & (trig_mmSS)) selections.add('emSS', (emSSmask) & (trig_emSS)) channels3L = ['eemSSonZ', 'eemSSoffZ', 'mmeSSonZ', 'mmeSSoffZ'] selections.add('eemSSonZ', (ee_eemZmask) & (trig_eem)) selections.add('eemSSoffZ', (ee_eemOffZmask) & (trig_eem)) selections.add('mmeSSonZ', (mm_mmeZmask) & (trig_mme)) selections.add('mmeSSoffZ', (mm_mmeOffZmask) & (trig_mme)) channels3L += ['eeeSSonZ', 'eeeSSoffZ', 'mmmSSonZ', 'mmmSSoffZ'] selections.add('eeeSSonZ', (eeeOnZmask) & (trig_eee)) selections.add('eeeSSoffZ', (eeeOffZmask) & (trig_eee)) selections.add('mmmSSonZ', (mmmOnZmask) & (trig_mmm)) selections.add('mmmSSoffZ', (mmmOffZmask) & (trig_mmm)) channels4L = ['eeee', 'eeem', 'eemm', 'mmme', 'mmmm'] selections.add('eeee', ((nElec4l == 4) & (nMuon4l == 0)) & (trig_4l)) selections.add('eeem', ((nElec4l == 3) & (nMuon4l == 1)) & (trig_4l)) selections.add('eemm', ((nElec4l == 2) & (nMuon4l == 2)) & (trig_4l)) selections.add('mmme', ((nElec4l == 1) & (nMuon4l == 3)) & (trig_4l)) selections.add('mmmm', ((nElec4l == 0) & (nMuon4l == 4)) & (trig_4l)) selections.add('ch+', (sumcharge > 0)) selections.add('ch-', (sumcharge < 0)) selections.add('ch0', (sumcharge == 0)) levels = ['base', '1+bm2+bl', '1bm', '2+bm'] selections.add('base', (nElec + nMuon >= 2)) selections.add('1+bm2+bl', (nElec + nMuon >= 2) & ((nbtagsm >= 1) & (nbtagsl >= 2))) selections.add('1bm', (nElec + nMuon >= 2) & (nbtagsm == 1)) selections.add('2+bm', (nElec + nMuon >= 2) & (nbtagsm >= 2)) # Variables invMass_eeSSonZ = (eeSSonZ.e0 + eeSSonZ.e1).mass invMass_eeSSoffZ = (eeSSoffZ.e0 + eeSSoffZ.e1).mass invMass_mmSSonZ = (mmSSonZ.m0 + mmSSonZ.m1).mass invMass_mmSSoffZ = (mmSSoffZ.m0 + mmSSoffZ.m1).mass invMass_emSS = (emSS.e + emSS.m).mass varnames = {} varnames['met'] = met.pt varnames['ht'] = ht varnames['njets'] = njets varnames['invmass'] = { 'eeSSonZ': invMass_eeSSonZ, 'eeSSoffZ': invMass_eeSSoffZ, 'mmSSonZ': invMass_mmSSonZ, 'mmSSoffZ': invMass_mmSSoffZ, 'emSS': invMass_emSS, 'eemSSonZ': mZ_eem, 'eemSSoffZ': mZ_eem, 'mmeSSonZ': mZ_mme, 'mmeSSoffZ': mZ_mme, 'eeeSSonZ': mZ_eee, 'eeeSSoffZ': mZ_eee, 'mmmSSonZ': mZ_mmm, 'mmmSSoffZ': mZ_mmm, } varnames['m3l'] = { 'eemSSonZ': m3l_eem, 'eemSSoffZ': m3l_eem, 'mmeSSonZ': m3l_mme, 'mmeSSoffZ': m3l_mme, 'eeeSSonZ': m3l_eee, 'eeeSSoffZ': m3l_eee, 'mmmSSonZ': m3l_mmm, 'mmmSSoffZ': m3l_mmm, } varnames['e0pt'] = e0.pt varnames['e0eta'] = e0.eta varnames['m0pt'] = m0.pt varnames['m0eta'] = m0.eta varnames['j0pt'] = j0.pt varnames['j0eta'] = j0.eta varnames['counts'] = np.ones_like(events['event']) # systematics systList = [] if isData == False: systList = ['nominal'] if self._do_systematics: systList = systList + [ 'lepSFUp', 'lepSFDown', 'btagSFUp', 'btagSFDown' ] else: systList = ['noweight'] # fill Histos hout = self.accumulator.identity() normweights = weights['all'].weight().flatten( ) # Why does it not complain about .flatten() here? sowweights = np.ones_like(normweights) if len( self._wc_names_lst) > 0 else normweights hout['SumOfEFTweights'].fill(sample=histAxisName, SumOfEFTweights=varnames['counts'], weight=sowweights, eft_coeff=eft_coeffs, eft_err_coeff=eft_w2_coeffs) for syst in systList: for var, v in varnames.items(): for ch in channels2LSS + channels3L + channels4L: for sumcharge in ['ch+', 'ch-', 'ch0']: for lev in levels: #find the event weight to be used when filling the histograms weightSyst = syst #in the case of 'nominal', or the jet energy systematics, no weight systematic variation is used (weightSyst=None) if syst in [ 'nominal', 'JERUp', 'JERDown', 'JESUp', 'JESDown' ]: weightSyst = None # no weight systematic for these variations if syst == 'noweight': weight = np.ones(len(events)) # for data else: # call weights.weight() with the name of the systematic to be varied if ch in channels3L: ch_w = ch[:3] elif ch in channels2LSS: ch_w = ch[:2] else: ch_w = ch weight = weights['all'].weight( weightSyst ) if isData else weights[ch_w].weight( weightSyst) cuts = [ch] + [lev] + [sumcharge] cut = selections.all(*cuts) weights_flat = weight[cut].flatten( ) # Why does it not complain about .flatten() here? weights_ones = np.ones_like(weights_flat, dtype=np.int) eft_coeffs_cut = eft_coeffs[ cut] if eft_coeffs is not None else None eft_w2_coeffs_cut = eft_w2_coeffs[ cut] if eft_w2_coeffs is not None else None # filling histos if var == 'invmass': if ((ch in [ 'eeeSSoffZ', 'mmmSSoffZ', 'eeeSSonZ', 'mmmSSonZ' ]) or (ch in channels4L)): continue else: values = ak.flatten(v[ch][cut]) hout['invmass'].fill( eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut, sample=histAxisName, channel=ch, cut=lev, sumcharge=sumcharge, invmass=values, weight=weights_flat, systematic=syst) elif var == 'm3l': if ((ch in channels2LSS) or (ch in [ 'eeeSSoffZ', 'mmmSSoffZ', 'eeeSSonZ', 'mmmSSonZ' ]) or (ch in channels4L)): continue values = ak.flatten(v[ch][cut]) hout['m3l'].fill( eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut, sample=histAxisName, channel=ch, cut=lev, sumcharge=sumcharge, m3l=values, weight=weights_flat, systematic=syst) else: values = v[cut] # These all look identical, do we need if/else here? if var == 'ht': hout[var].fill( eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut, ht=values, sample=histAxisName, channel=ch, cut=lev, sumcharge=sumcharge, weight=weights_flat, systematic=syst) elif var == 'met': hout[var].fill( eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut, met=values, sample=histAxisName, channel=ch, cut=lev, sumcharge=sumcharge, weight=weights_flat, systematic=syst) elif var == 'njets': hout[var].fill( eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut, njets=values, sample=histAxisName, channel=ch, cut=lev, sumcharge=sumcharge, weight=weights_flat, systematic=syst) elif var == 'nbtags': hout[var].fill( eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut, nbtags=values, sample=histAxisName, channel=ch, cut=lev, sumcharge=sumcharge, weight=weights_flat, systematic=syst) elif var == 'counts': hout[var].fill(counts=values, sample=histAxisName, channel=ch, cut=lev, sumcharge=sumcharge, weight=weights_ones, systematic=syst) elif var == 'j0eta': if lev == 'base': continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill( eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut, j0eta=values, sample=histAxisName, channel=ch, cut=lev, sumcharge=sumcharge, weight=weights_flat, systematic=syst) elif var == 'e0pt': if ch in [ 'mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ', 'mmmSSonZ', 'mmmm' ]: continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill( eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut, e0pt=values, sample=histAxisName, channel=ch, cut=lev, sumcharge=sumcharge, weight=weights_flat, systematic=syst ) # Crashing here, not sure why. Related to values? elif var == 'm0pt': if ch in [ 'eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ', 'eeeSSonZ', 'eeee' ]: continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill( eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut, m0pt=values, sample=histAxisName, channel=ch, cut=lev, sumcharge=sumcharge, weight=weights_flat, systematic=syst) elif var == 'e0eta': if ch in [ 'mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ', 'mmmSSonZ', 'mmmm' ]: continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill( eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut, e0eta=values, sample=histAxisName, channel=ch, cut=lev, sumcharge=sumcharge, weight=weights_flat, systematic=syst) elif var == 'm0eta': if ch in [ 'eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ', 'eeeSSonZ', 'eeee' ]: continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill( eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut, m0eta=values, sample=histAxisName, channel=ch, cut=lev, sumcharge=sumcharge, weight=weights_flat, systematic=syst) elif var == 'j0pt': if lev == 'base': continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill( eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut, j0pt=values, sample=histAxisName, channel=ch, cut=lev, sumcharge=sumcharge, weight=weights_flat, systematic=syst) return hout
def process(self, events): # Dataset parameters dataset = events.metadata['dataset'] year = self._samples[dataset]['year'] xsec = self._samples[dataset]['xsec'] sow = self._samples[dataset]['nSumOfWeights' ] isData = self._samples[dataset]['isData'] datasets = ['SingleMuon', 'SingleElectron', 'EGamma', 'MuonEG', 'DoubleMuon', 'DoubleElectron'] for d in datasets: if d in dataset: dataset = dataset.split('_')[0] # Inittialize objects met = events.GenMET e = events.GenPart[abs(events.GenPart.pdgId)==11] mu = events.GenPart[abs(events.GenPart.pdgId)==13] tau = events.GenPart[abs(events.GenPart.pdgId)==15] j = events.GenJet leading_mu = mu[ak.argmax(mu.pt,axis=-1,keepdims=True)] leading_e = e[ak.argmax(e.pt,axis=-1,keepdims=True)] nElec = ak.num(e) nMuon = ak.num(mu) nTau = ak.num(tau) twoLeps = (nElec+nMuon) == 2 threeLeps = (nElec+nMuon) == 3 twoElec = (nElec == 2) twoMuon = (nMuon == 2) e0 = e[ak.argmax(e.pt,axis=-1,keepdims=True)] m0 = mu[ak.argmax(mu.pt,axis=-1,keepdims=True)] elecs = e[ak.argsort(e.pt, ascending=False)] muons = mu[ak.argsort(mu.pt, ascending=False)] e1 = elecs e2 = elecs m1 = muons m2 = muons # Jet selection jetptname = 'pt_nom' if hasattr(j, 'pt_nom') else 'pt' njets = ak.num(j) ht = ak.sum(j.pt,axis=-1) jets = j[ak.argsort(j.pt, ascending=False)] j0 = j[ak.argmax(j.pt,axis=-1,keepdims=True)] j1 = jets j2 = jets j3 = jets nbtags = ak.num(j[abs(j.hadronFlavour)==5]) ################################################################## ### 2 same-sign leptons ################################################################## # emu singe = e [(nElec==1)&(nMuon==1)&(e .pt>-1)] singm = mu[(nElec==1)&(nMuon==1)&(mu.pt>-1)] em = ak.cartesian({"e":singe,"m":singm}) emSSmask = (em.e.pdgId*em.m.pdgId>0) emSS = em[emSSmask] nemSS = len(ak.flatten(emSS)) year = 2018 lepSF_emSS = GetLeptonSF(mu.pt, mu.eta, 'm', e.pt, e.eta, 'e', year=year) # ee and mumu # pt>-1 to preserve jagged dimensions ee = e [(nElec==2)&(nMuon==0)&(e.pt>-1)] mm = mu[(nElec==0)&(nMuon==2)&(mu.pt>-1)] eepairs = ak.combinations(ee, 2, fields=["e0","e1"]) eeSSmask = (eepairs.e0.pdgId*eepairs.e1.pdgId>0) eeonZmask = (np.abs((eepairs.e0+eepairs.e1).mass-91.2)<10) eeoffZmask = (eeonZmask==0) mmpairs = ak.combinations(mm, 2, fields=["m0","m1"]) mmSSmask = (mmpairs.m0.pdgId*mmpairs.m1.pdgId>0) mmonZmask = (np.abs((mmpairs.m0+mmpairs.m1).mass-91.2)<10) mmoffZmask = (mmonZmask==0) eeSSonZ = eepairs[eeSSmask & eeonZmask] eeSSoffZ = eepairs[eeSSmask & eeoffZmask] mmSSonZ = mmpairs[mmSSmask & mmonZmask] mmSSoffZ = mmpairs[mmSSmask & mmoffZmask] neeSS = len(ak.flatten(eeSSonZ)) + len(ak.flatten(eeSSoffZ)) nmmSS = len(ak.flatten(mmSSonZ)) + len(ak.flatten(mmSSoffZ)) lepSF_eeSS = GetLeptonSF(eepairs.e0.pt, eepairs.e0.eta, 'e', eepairs.e1.pt, eepairs.e1.eta, 'e', year=year) lepSF_mumuSS = GetLeptonSF(mmpairs.m0.pt, mmpairs.m0.eta, 'm', mmpairs.m1.pt, mmpairs.m1.eta, 'm', year=year) print('Same-sign events [ee, emu, mumu] = [%i, %i, %i]'%(neeSS, nemSS, nmmSS)) # Cuts eeSSmask = (ak.num(eeSSmask[eeSSmask])>0) mmSSmask = (ak.num(mmSSmask[mmSSmask])>0) eeonZmask = (ak.num(eeonZmask[eeonZmask])>0) eeoffZmask = (ak.num(eeoffZmask[eeoffZmask])>0) mmonZmask = (ak.num(mmonZmask[mmonZmask])>0) mmoffZmask = (ak.num(mmoffZmask[mmoffZmask])>0) emSSmask = (ak.num(emSSmask[emSSmask])>0) ################################################################## ### 3 leptons ################################################################## # eem muon_eem = mu[(nElec==2)&(nMuon==1)&(mu.pt>-1)] elec_eem = e[(nElec==2)&(nMuon==1)&( e.pt>-1)] ee_eem = ak.combinations(elec_eem, 2, fields=["e0", "e1"]) ee_eemZmask = (ee_eem.e0.pdgId*ee_eem.e1.pdgId<1)&(np.abs((ee_eem.e0+ee_eem.e1).mass-91.2)<10) ee_eemOffZmask = (ee_eem.e0.pdgId*ee_eem.e1.pdgId<1)&(np.abs((ee_eem.e0+ee_eem.e1).mass-91.2)>10) ee_eemZmask = (ak.num(ee_eemZmask[ee_eemZmask])>0) ee_eemOffZmask = (ak.num(ee_eemOffZmask[ee_eemOffZmask])>0) eepair_eem = (ee_eem.e0+ee_eem.e1) trilep_eem = eepair_eem+muon_eem #ak.cartesian({"e0":ee_eem.e0,"e1":ee_eem.e1, "m":muon_eem}) lepSF_eem = GetLeptonSF(ee_eem.e0.pt, ee_eem.e0.eta, 'e', ee_eem.e1.pt, ee_eem.e1.eta, 'e', mu.pt, mu.eta, 'm', year) # mme muon_mme = mu[(nElec==1)&(nMuon==2)&(mu.pt>-1)] elec_mme = e[(nElec==1)&(nMuon==2)&( e.pt>-1)] mm_mme = ak.combinations(muon_mme, 2, fields=["m0", "m1"]) mm_mmeZmask = (mm_mme.m0.pdgId*mm_mme.m1.pdgId<1)&(np.abs((mm_mme.m0+mm_mme.m1).mass-91.2)<10) mm_mmeOffZmask = (mm_mme.m0.pdgId*mm_mme.m1.pdgId<1)&(np.abs((mm_mme.m0+mm_mme.m1).mass-91.2)>10) mm_mmeZmask = (ak.num(mm_mmeZmask[mm_mmeZmask])>0) mm_mmeOffZmask = (ak.num(mm_mmeOffZmask[mm_mmeOffZmask])>0) mmpair_mme = (mm_mme.m0+mm_mme.m1) trilep_mme = mmpair_mme+elec_mme mZ_mme = mmpair_mme.mass mZ_eem = eepair_eem.mass m3l_eem = trilep_eem.mass m3l_mme = trilep_mme.mass lepSF_mme = GetLeptonSF(mm_mme.m0.pt, mm_mme.m0.eta, 'm', mm_mme.m1.pt, mm_mme.m1.eta, 'm', e.pt, e.eta, 'e', year) # eee and mmm eee = e[(nElec==3)&(nMuon==0)&( e.pt>-1)] mmm = mu[(nElec==0)&(nMuon==3)&(mu.pt>-1)] eee_leps = ak.combinations(eee, 3, fields=["e0", "e1", "e2"]) mmm_leps = ak.combinations(mmm, 3, fields=["m0", "m1", "m2"]) ee_pairs = ak.combinations(eee, 2, fields=["e0", "e1"]) mm_pairs = ak.combinations(mmm, 2, fields=["m0", "m1"]) ee_pairs_index = ak.argcombinations(eee, 2, fields=["e0", "e1"]) mm_pairs_index = ak.argcombinations(mmm, 2, fields=["m0", "m1"]) lepSF_eee = GetLeptonSF(eee_leps.e0.pt, eee_leps.e0.eta, 'e', eee_leps.e1.pt, eee_leps.e1.eta, 'e', eee_leps.e2.pt, eee_leps.e2.eta, 'e', year) lepSF_mmm = GetLeptonSF(mmm_leps.m0.pt, mmm_leps.m0.eta, 'm', mmm_leps.m1.pt, mmm_leps.m1.eta, 'm', mmm_leps.m2.pt, mmm_leps.m2.eta, 'm', year) mmSFOS_pairs = mm_pairs[(np.abs(mm_pairs.m0.pdgId) == np.abs(mm_pairs.m1.pdgId)) & (mm_pairs.m0.pdgId != mm_pairs.m1.pdgId)] offZmask_mm = ak.all(np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2)>10., axis=1, keepdims=True) & (ak.num(mmSFOS_pairs)>0) onZmask_mm = ak.any(np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2)<10., axis=1, keepdims=True) eeSFOS_pairs = ee_pairs[(np.abs(ee_pairs.e0.pdgId) == np.abs(ee_pairs.e1.pdgId)) & (ee_pairs.e0.pdgId != ee_pairs.e1.pdgId)] offZmask_ee = ak.all(np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2)>10, axis=1, keepdims=True) & (ak.num(eeSFOS_pairs)>0) onZmask_ee = ak.any(np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2)<10, axis=1, keepdims=True) # Create masks **for event selection** eeeOnZmask = (ak.num(onZmask_ee[onZmask_ee])>0) eeeOffZmask = (ak.num(offZmask_ee[offZmask_ee])>0) mmmOnZmask = (ak.num(onZmask_mm[onZmask_mm])>0) mmmOffZmask = (ak.num(offZmask_mm[offZmask_mm])>0) # Now we need to create masks for the leptons in order to select leptons from the Z boson candidate (in onZ categories) ZeeMask = ak.argmin(np.abs((eeSFOS_pairs.e0 + eeSFOS_pairs.e1).mass - 91.2),axis=1,keepdims=True) ZmmMask = ak.argmin(np.abs((mmSFOS_pairs.m0 + mmSFOS_pairs.m1).mass - 91.2),axis=1,keepdims=True) Zee = eeSFOS_pairs[ZeeMask] Zmm = mmSFOS_pairs[ZmmMask] eZ0= Zee.e0[ak.num(eeSFOS_pairs)>0] eZ1= Zee.e1[ak.num(eeSFOS_pairs)>0] eZ = eZ0+eZ1 mZ0= Zmm.m0[ak.num(mmSFOS_pairs)>0] mZ1= Zmm.m1[ak.num(mmSFOS_pairs)>0] mZ = mZ0+mZ1 mZ_eee = eZ.mass mZ_mmm = mZ.mass # And for the W boson ZmmIndices = mm_pairs_index[ZmmMask] ZeeIndices = ee_pairs_index[ZeeMask] eW = eee[~ZeeIndices.e0 | ~ZeeIndices.e1] mW = mmm[~ZmmIndices.m0 | ~ZmmIndices.m1] triElec = eee_leps.e0+eee_leps.e1+eee_leps.e2 triMuon = mmm_leps.m0+mmm_leps.m1+mmm_leps.m2 m3l_eee = triElec.mass m3l_mmm = triMuon.mass # Triggers trig_eeSS = passTrigger(events,'ee',isData,dataset) trig_mmSS = passTrigger(events,'mm',isData,dataset) trig_emSS = passTrigger(events,'em',isData,dataset) trig_eee = passTrigger(events,'eee',isData,dataset) trig_mmm = passTrigger(events,'mmm',isData,dataset) trig_eem = passTrigger(events,'eem',isData,dataset) trig_mme = passTrigger(events,'mme',isData,dataset) # MET filters # Weights genw = np.ones_like(events['MET_pt']) if isData else events['genWeight'] ### We need weights for: normalization, lepSF, triggerSF, pileup, btagSF... weights = {} for r in ['all', 'ee', 'mm', 'em', 'eee', 'mmm', 'eem', 'mme']: weights[r] = coffea.analysis_tools.Weights(len(events)) weights[r].add('norm',genw if isData else (xsec/sow)*genw) weights['ee'].add('lepSF_eeSS', lepSF_eeSS) weights['em'].add('lepSF_emSS', lepSF_emSS) weights['mm'].add('lepSF_mmSS', lepSF_mumuSS) weights['eee'].add('lepSF_eee', lepSF_eee) weights['mmm'].add('lepSF_mmm', lepSF_mmm) weights['mme'].add('lepSF_mme', lepSF_mme) weights['eem'].add('lepSF_eem', lepSF_eem) # Extract the EFT quadratic coefficients and optionally use them to calculate the coefficients on the w**2 quartic function # eft_coeffs is never Jagged so convert immediately to numpy for ease of use. eft_coeffs = ak.to_numpy(events['EFTfitCoefficients']) if hasattr(events, "EFTfitCoefficients") else None eft_w2_coeffs = efth.calc_w2_coeffs(eft_coeffs,self._dtype) if (self._do_errors and eft_coeffs is not None) else None # Selections and cuts selections = PackedSelection() channels2LSS = ['eeSSonZ', 'eeSSoffZ', 'mmSSonZ', 'mmSSoffZ', 'emSS'] selections.add('eeSSonZ', (eeonZmask)&(eeSSmask)&(trig_eeSS)) selections.add('eeSSoffZ', (eeoffZmask)&(eeSSmask)&(trig_eeSS)) selections.add('mmSSonZ', (mmonZmask)&(mmSSmask)&(trig_mmSS)) selections.add('mmSSoffZ', (mmoffZmask)&(mmSSmask)&(trig_mmSS)) selections.add('emSS', (emSSmask)&(trig_emSS)) channels3L = ['eemSSonZ', 'eemSSoffZ', 'mmeSSonZ', 'mmeSSoffZ'] selections.add('eemSSonZ', (ee_eemZmask)&(trig_eem)) selections.add('eemSSoffZ', (ee_eemOffZmask)&(trig_eem)) selections.add('mmeSSonZ', (mm_mmeZmask)&(trig_mme)) selections.add('mmeSSoffZ', (mm_mmeOffZmask)&(trig_mme)) channels3L += ['eeeSSonZ', 'eeeSSoffZ', 'mmmSSonZ', 'mmmSSoffZ'] selections.add('eeeSSonZ', (eeeOnZmask)&(trig_eee)) selections.add('eeeSSoffZ', (eeeOffZmask)&(trig_eee)) selections.add('mmmSSonZ', (mmmOnZmask)&(trig_mmm)) selections.add('mmmSSoffZ', (mmmOffZmask)&(trig_mmm)) levels = ['base', '2jets', '4jets', '4j1b', '4j2b'] selections.add('base', (nElec+nMuon>=2)) selections.add('2jets',(njets>=2)) selections.add('4jets',(njets>=4)) selections.add('4j1b',(njets>=4)&(nbtags>=1)) selections.add('4j2b',(njets>=4)&(nbtags>=2)) # Variables invMass_eeSSonZ = ( eeSSonZ.e0+ eeSSonZ.e1).mass invMass_eeSSoffZ = (eeSSoffZ.e0+eeSSoffZ.e1).mass invMass_mmSSonZ = ( mmSSonZ.m0+ mmSSonZ.m1).mass invMass_mmSSoffZ = (mmSSoffZ.m0+mmSSoffZ.m1).mass invMass_emSS = (emSS.e+emSS.m).mass varnames = {} varnames['met'] = met.pt varnames['ht'] = ht varnames['njets'] = njets varnames['nbtags'] = nbtags varnames['invmass'] = { 'eeSSonZ' : invMass_eeSSonZ, 'eeSSoffZ' : invMass_eeSSoffZ, 'mmSSonZ' : invMass_mmSSonZ, 'mmSSoffZ' : invMass_mmSSoffZ, 'emSS' : invMass_emSS, 'eemSSonZ' : mZ_eem, 'eemSSoffZ' : mZ_eem, 'mmeSSonZ' : mZ_mme, 'mmeSSoffZ' : mZ_mme, 'eeeSSonZ' : mZ_eee, 'eeeSSoffZ' : mZ_eee, 'mmmSSonZ' : mZ_mmm, 'mmmSSoffZ' : mZ_mmm, } varnames['m3l'] = { 'eemSSonZ' : m3l_eem, 'eemSSoffZ' : m3l_eem, 'mmeSSonZ' : m3l_mme, 'mmeSSoffZ' : m3l_mme, 'eeeSSonZ' : m3l_eee, 'eeeSSoffZ' : m3l_eee, 'mmmSSonZ' : m3l_mmm, 'mmmSSoffZ' : m3l_mmm, } varnames['e0pt' ] = e0.pt varnames['e0eta'] = e0.eta varnames['m0pt' ] = m0.pt varnames['m0eta'] = m0.eta varnames['e1pt' ] = e1 varnames['e1eta'] = e1 varnames['e2pt' ] = e2 varnames['e2eta'] = e2 varnames['m1pt' ] = m1 varnames['m1eta'] = m1 varnames['m2pt' ] = m2 varnames['m2eta'] = m2 varnames['j0pt' ] = j0.pt varnames['j0eta'] = j0.eta varnames['j1pt'] = j1 varnames['j1eta'] = j1 varnames['j2pt'] = j2 varnames['j2eta'] = j2 varnames['j3pt'] = j3 varnames['j3eta'] = j3 varnames['counts'] = np.ones_like(events.GenMET.pt) # fill Histos hout = self.accumulator.identity() normweights = weights['all'].weight().flatten() # Why does it not complain about .flatten() here? hout['SumOfEFTweights'].fill(sample=dataset, SumOfEFTweights=varnames['counts'], weight=normweights, eft_coeff=eft_coeffs, eft_err_coeff=eft_w2_coeffs) for var, v in varnames.items(): for ch in channels2LSS+channels3L: for lev in levels: weight = weights[ ch[:3] if (ch.startswith('eee') or ch.startswith('mmm') or ch.startswith('eem') or ch.startswith('mme')) else ch[:2]].weight() cuts = [ch] + [lev] cut = selections.all(*cuts) weights_flat = weight[cut].flatten() # Why does it not complain about .flatten() here? weights_ones = np.ones_like(weights_flat, dtype=np.int) eft_coeffs_cut = eft_coeffs[cut] if eft_coeffs is not None else None eft_w2_coeffs_cut = eft_w2_coeffs[cut] if eft_w2_coeffs is not None else None if var == 'invmass': if ch in ['eeeSSoffZ', 'mmmSSoffZ']: continue elif ch in ['eeeSSonZ' , 'mmmSSonZ' ]: continue #values = v[ch] else : values = ak.flatten(v[ch][cut]) hout['invmass'].fill(eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut, sample=dataset, channel=ch, cut=lev, invmass=values, weight=weights_flat) elif var == 'm3l': if ch in ['eeSSonZ','eeSSoffZ', 'mmSSonZ', 'mmSSoffZ','emSS', 'eeeSSoffZ', 'mmmSSoffZ', 'eeeSSonZ' , 'mmmSSonZ']: continue values = ak.flatten(v[ch][cut]) hout['m3l'].fill(sample=dataset, channel=ch, cut=lev, m3l=values, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) else: values = v[cut] if var == 'ht' : hout[var].fill(ht=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'met' : hout[var].fill(met=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'njets' : hout[var].fill(njets=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'nbtags': hout[var].fill(nbtags=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'counts': hout[var].fill(counts=values, sample=dataset, channel=ch, cut=lev, weight=weights_ones) elif var == 'j0eta' : if lev == 'base': continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill(j0eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'e0pt' : if ch in ['mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ', 'mmmSSonZ']: continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill(e0pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'm0pt' : if ch in ['eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ', 'eeeSSonZ']: continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill(m0pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'e0eta' : if ch in ['mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ', 'mmmSSonZ']: continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill(e0eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'm0eta': if ch in ['eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ', 'eeeSSonZ']: continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill(m0eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'j0pt' : if lev == 'base': continue values = ak.flatten(values) #values=np.asarray(values) hout[var].fill(j0pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'j1pt': if lev == "base": continue values = values.pt[:,1] #values = ak.flatten(values) hout[var].fill(j1pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var =='j1eta': if lev == 'base': continue values = values.eta[:,1] hout[var].fill(j1eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'j2pt': if lev in ['base', "2jets"]: continue values = values.pt[:,2] hout[var].fill(j2pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'j2eta': if lev in ['base', "2jets"]: continue values = values.eta[:,2] hout[var].fill(j2eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'j3pt': if lev in ['base', "2jets"]: continue values = values.pt[:,3] hout[var].fill(j3pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'j3eta': if lev in ['base', "2jets"]: continue values = values.eta[:,3] hout[var].fill(j3eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'e1pt': if ch in ['mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ', 'mmmSSonZ', 'mmeSSonZ', 'mmeSSoffZ', 'emSS']: continue values = values.pt[:,1] hout[var].fill(e1pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'e1eta': if ch in ['mmSSonZ', 'mmSSoffZ', 'mmmSSoffZ', 'mmmSSonZ', 'mmeSSonZ', 'mmeSSoffZ', 'emSS']: continue values = values.eta[:,1] hout[var].fill(e1eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'e2pt': if ch in ['eeeSSonZ', 'eeeSSoffZ']: values = values.pt[:,2] hout[var].fill(e2pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'e2eta': if ch in ['eeeSSonZ', 'eeeSSoffZ']: values = values.eta[:,2] hout[var].fill(e2eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'm1pt': if ch in ['eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ', 'eeeSSonZ', 'eemSSonZ', 'eemSSoffZ', 'emSS']: continue values = values.pt[:,1] hout[var].fill(m1pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'm1eta': if ch in ['eeSSonZ', 'eeSSoffZ', 'eeeSSoffZ', 'eeeSSonZ', 'eemSSonZ', 'eemSSoffZ', 'emSS']: continue values = values.eta[:,1] hout[var].fill(m1eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'm2pt': if ch in ['mmmSSonZ', 'mmmSSoffZ']: values = values.pt[:,2] hout[var].fill(m2pt=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) elif var == 'm2eta': if ch in ['mmmSSonZ', 'mmmSSoffZ']: values = values.eta[:,2] hout[var].fill(m2eta=values, sample=dataset, channel=ch, cut=lev, weight=weights_flat, eft_coeff=eft_coeffs_cut, eft_err_coeff=eft_w2_coeffs_cut) return hout