Esempio n. 1
0
    def _get_targets_single(self,
                            flat_anchors,
                            valid_flags,
                            gt_bboxes,
                            gt_labels,
                            img_shape,
                            unmap_outputs=True):
        """Compute regression and classification targets for anchors in
            a single image.
        Args:
            flat_anchors: Multi-level anchors of the image, which are
                concatenated into a single tensor of shape (num_anchors ,4)
            valid_flags: Multi level valid flags of the image,
                which are concatenated into a single tensor of
                    shape (num_anchors,).
            gt_bboxes: Ground truth bboxes of the image,
                shape (num_gts, 4).
            gt_labels: Ground truth labels of each box, shape (num_gts,). If not None then assign
                these labels to positive anchors
            img_shape: shape of the image (unpadded)
            unmap_outputs: Whether to map outputs back to the original
                set of anchors.
        Returns:
            target_matches: (num_anchors,) 1 = positive anchor, -1 = negative anchor, 0 = neutral anchor 
            bboxes_targets: (num_anchors, 4)
            bbox_inside_weights: (num_anchors, 4)
            bbox_outside_weights: (num_anchors, 4)
        """
        gt_bboxes, _ = trim_zeros(gt_bboxes)

        # 1. Filter anchors to valid area
        inside_flags = self._anchor_inside_flags(flat_anchors, valid_flags,
                                                 img_shape)
        # TODO: handle scenario where all flags are False
        anchors = tf.boolean_mask(flat_anchors, inside_flags)
        num_anchors = tf.shape(flat_anchors)[0]

        # 2. Find IoUs
        num_valid_anchors = tf.shape(anchors)[0]
        target_matches = -tf.ones((num_valid_anchors, ), tf.int32)
        overlaps = geometry.compute_overlaps(anchors, gt_bboxes)
        # a. best GT index for each anchor
        argmax_overlaps = tf.argmax(overlaps, axis=1, output_type=tf.int32)
        max_overlaps = tf.reduce_max(overlaps, axis=1)
        # b. best anchor index for each GT (non deterministic in case of ties)
        gt_argmax_overlaps = tf.argmax(
            overlaps, axis=0, output_type=tf.int32
        )  # tf.where(tf.equal(overlaps, gt_max_overlaps))[:, 0]

        # 3. Assign labels
        bg_cond = tf.math.less(max_overlaps, self.neg_iou_thr)
        fg_cond = tf.math.greater_equal(max_overlaps, self.pos_iou_thr)
        target_matches = tf.where(bg_cond, tf.zeros_like(target_matches),
                                  target_matches)
        gt_indices = tf.expand_dims(gt_argmax_overlaps, axis=1)
        if gt_labels is None:  # RPN will have gt labels set to None
            gt_labels = tf.ones(tf.shape(gt_indices)[0], dtype=tf.int32)
            #TODO check impact of next 2 lines
            target_matches = tf.tensor_scatter_nd_update(
                target_matches, gt_indices, gt_labels
            )  # note that in the case of one label matching multiple anchors the last one wins (is this okay???)
            target_matches = tf.where(fg_cond, tf.ones_like(target_matches),
                                      target_matches)
        else:
            gt_labels = gt_labels[:tf.shape(gt_indices)
                                  [0]]  # get rid of padded labels (-1)
            target_matches = tf.where(fg_cond,
                                      tf.gather(gt_labels, argmax_overlaps),
                                      target_matches)

        # 4. Sample selected if we have greater number of candidates than needed by
        #    config (only if num_samples > 0, e.g. in two stage)
        if self.num_samples > 0:
            fg_inds = tf.where(tf.equal(target_matches, 1))[:, 0]
            max_pos_samples = tf.cast(
                self.positive_fraction * self.num_samples, tf.int32)
            if tf.greater(tf.size(fg_inds), max_pos_samples):
                fg_inds = tf.random.shuffle(fg_inds)
                disable_inds = fg_inds[max_pos_samples:]
                fg_inds = fg_inds[:max_pos_samples]
                disable_inds = tf.expand_dims(disable_inds, axis=1)
                disable_labels = -tf.ones(tf.shape(disable_inds)[0],
                                          dtype=tf.int32)
                target_matches = tf.tensor_scatter_nd_update(
                    target_matches, disable_inds, disable_labels)
            num_fg = tf.reduce_sum(
                tf.cast(tf.equal(target_matches, 1), tf.int32))
            num_bg = self.num_samples - num_fg
            bg_inds = tf.where(tf.equal(target_matches, 0))[:, 0]
            if tf.greater(tf.size(bg_inds), num_bg):
                bg_inds = tf.random.shuffle(bg_inds)
                disable_inds = bg_inds[num_bg:]
                bg_inds = bg_inds[:num_bg]
                disable_inds = tf.expand_dims(disable_inds, axis=1)
                disable_labels = -tf.ones(tf.shape(disable_inds)[0],
                                          dtype=tf.int32)
                target_matches = tf.tensor_scatter_nd_update(
                    target_matches, disable_inds, disable_labels)

        # 5. Calculate deltas for chosen targets based on GT (encode)
        bboxes_targets = transforms.bbox2delta(anchors,
                                               tf.gather(
                                                   gt_bboxes, argmax_overlaps),
                                               target_means=self.target_means,
                                               target_stds=self.target_stds)

        # Regression weights
        bbox_inside_weights = tf.zeros((tf.shape(anchors)[0], 4),
                                       dtype=tf.float32)
        # match_indices = tf.where(tf.equal(target_matches, 1))
        match_indices = tf.where(tf.math.greater(target_matches, 0))

        updates = tf.ones([tf.shape(match_indices)[0], 4],
                          bbox_inside_weights.dtype)
        bbox_inside_weights = tf.tensor_scatter_nd_update(
            bbox_inside_weights, match_indices, updates)

        bbox_outside_weights = tf.zeros((tf.shape(anchors)[0], 4),
                                        dtype=tf.float32)
        if self.num_samples > 0:
            num_examples = tf.reduce_sum(
                tf.cast(target_matches >= 0, bbox_outside_weights.dtype))
        else:
            num_examples = tf.reduce_sum(
                tf.cast(target_matches > 0, bbox_outside_weights.dtype))
            num_fg = num_examples
            num_bg = 0  # in RetinaNet we only care about positive anchors
        out_indices = tf.where(target_matches >= 0)
        updates = tf.ones([tf.shape(out_indices)[0], 4],
                          bbox_outside_weights.dtype) * 1.0 / num_examples
        bbox_outside_weights = tf.tensor_scatter_nd_update(
            bbox_outside_weights, out_indices, updates)
        # for everything that is not selected fill with `fill` value
        selected_anchor_idx = tf.where(inside_flags)[:, 0]
        return (tf.stop_gradient(
            _unmap(target_matches, num_anchors, selected_anchor_idx, -1)),
                tf.stop_gradient(
                    _unmap(bboxes_targets, num_anchors, selected_anchor_idx,
                           0)),
                tf.stop_gradient(
                    _unmap(bbox_inside_weights, num_anchors,
                           selected_anchor_idx, 0)),
                tf.stop_gradient(
                    _unmap(bbox_outside_weights, num_anchors,
                           selected_anchor_idx, 0)), num_fg, num_bg)
    def _build_single_target(self, proposals, gt_boxes, gt_class_ids,
                             img_shape):
        '''
        Args
        ---
            proposals: [num_proposals, (y1, x1, y2, x2)] in regular coordinates.
            gt_boxes: [num_gt_boxes, (y1, x1, y2, x2)]
            gt_class_ids: [num_gt_boxes]
            img_shape: np.ndarray. [2]. (img_height, img_width)
            
        Returns
        ---
            rois: [num_rois, (y1, x1, y2, x2)]
            target_matchs: [num_positive_rois]
            target_deltas: [num_positive_rois, (dy, dx, log(dh), log(dw))]
        '''
        # remove padded proposals and gt boxes if any
        proposals, _ = trim_zeros(proposals)
        gt_boxes, non_zeros = trim_zeros(gt_boxes)
        gt_boxes = tf.cast(gt_boxes, proposals.dtype)
        gt_labels = tf.boolean_mask(gt_class_ids, non_zeros)
        proposals_gt = tf.concat([proposals, gt_boxes], axis=0)

        iou = geometry.compute_overlaps(proposals_gt, gt_boxes)
        max_overlaps = tf.reduce_max(iou, axis=1)
        gt_assignment = tf.argmax(iou, axis=1)
        labels = tf.gather(gt_labels, gt_assignment)

        # get FG and BG
        fg_inds = tf.where(max_overlaps >= self.pos_iou_thr)[:, 0]
        bg_inds = tf.where(
            tf.logical_and(max_overlaps < self.pos_iou_thr,
                           max_overlaps >= self.neg_iou_thr))[:, 0]
        # filter FG/BG
        if tf.size(fg_inds) > self._max_pos_samples:
            fg_inds = tf.random.shuffle(fg_inds)[:self._max_pos_samples]
        remaining = self.num_rcnn_deltas - tf.size(fg_inds)
        num_bg = tf.size(bg_inds)
        if tf.greater_equal(num_bg, remaining):
            bg_inds = tf.random.shuffle(bg_inds)[:remaining]
        else:
            # sample with replacement from very poor overlaps if number of backgrounds is not enough
            bg_inds = tf.where(max_overlaps < self.pos_iou_thr)[:, 0]
            bg_inds = tf.random.shuffle(bg_inds)[:remaining]
            num_bg = tf.size(bg_inds)
            while remaining > num_bg:
                dups = remaining - num_bg
                dup_bgs = tf.random.shuffle(bg_inds)[:dups]
                bg_inds = tf.concat([bg_inds, dup_bgs], axis=0)
                num_bg = tf.size(bg_inds)

        # tf.print('proposal target generated %d fgs and %d bgs.' % (tf.size(fg_inds), tf.size(bg_inds)))

        keep_inds = tf.concat([fg_inds, bg_inds], axis=0)
        final_rois = tf.gather(proposals_gt, keep_inds)  # rois[keep_inds]
        final_labels = tf.gather(labels, keep_inds)  # labels[keep_inds]
        zero_indices = tf.expand_dims(tf.range(tf.size(fg_inds),
                                               tf.size(keep_inds),
                                               dtype=tf.int32),
                                      axis=1)
        zero_labels = tf.zeros(tf.shape(zero_indices)[0], dtype=tf.int32)
        final_labels = tf.tensor_scatter_nd_update(final_labels, zero_indices,
                                                   zero_labels)

        # inside weights - positive examples are set, rest are zeros
        bbox_inside_weights = tf.zeros(
            (tf.size(keep_inds), self.num_classes, 4), dtype=tf.float32)
        if tf.size(fg_inds) > 0:
            if self.reg_class_agnostic:
                cur_index = tf.transpose(
                    tf.stack([
                        tf.range(tf.size(fg_inds)),
                        tf.zeros(tf.size(fg_inds), dtype=tf.int32)
                    ]))
            else:
                cur_index = tf.stack(
                    [tf.range(tf.size(fg_inds)),
                     tf.gather(labels, fg_inds)],
                    axis=1)
            bbox_inside_weights = tf.tensor_scatter_nd_update(
                bbox_inside_weights, cur_index,
                tf.ones([tf.size(fg_inds), 4], bbox_inside_weights.dtype))
        bbox_inside_weights = tf.reshape(bbox_inside_weights,
                                         [-1, self.num_classes * 4])

        final_bbox_targets = tf.zeros(
            (tf.size(keep_inds), self.num_classes, 4), dtype=tf.float32)
        if tf.size(fg_inds) > 0:
            bbox_targets = transforms.bbox2delta(
                tf.gather(final_rois, tf.range(tf.size(fg_inds))),
                tf.gather(gt_boxes, tf.gather(gt_assignment, fg_inds)),
                target_stds=self.target_stds,
                target_means=self.target_means)
            if self.reg_class_agnostic:
                final_bbox_targets = tf.tensor_scatter_nd_update(
                    final_bbox_targets,
                    tf.transpose(
                        tf.stack([
                            tf.range(tf.size(fg_inds)),
                            tf.zeros(tf.size(fg_inds), dtype=tf.int32)
                        ])), bbox_targets)
            else:
                final_bbox_targets = tf.tensor_scatter_nd_update(
                    final_bbox_targets,
                    tf.stack([
                        tf.range(tf.size(fg_inds)),
                        tf.gather(labels, fg_inds)
                    ],
                             axis=1), bbox_targets)
        final_bbox_targets = tf.reshape(final_bbox_targets,
                                        [-1, self.num_classes * 4])

        bbox_outside_weights = tf.ones_like(
            bbox_inside_weights,
            dtype=bbox_inside_weights.dtype) * 1.0 / self.num_rcnn_deltas
        fg_assignments = tf.gather(gt_assignment, keep_inds)
        return (tf.stop_gradient(final_rois), tf.stop_gradient(final_labels),
                tf.stop_gradient(final_bbox_targets),
                tf.stop_gradient(bbox_inside_weights),
                tf.stop_gradient(bbox_outside_weights),
                tf.stop_gradient(fg_assignments))
    def _build_single_target(self, all_anchors, valid_flags, gt_bboxes, gt_class_ids):

        gt_bboxes, _ = trim_zeros(gt_bboxes)
        total_anchors = all_anchors.get_shape().as_list()[0]

        # 1. Filter anchors to valid area
        selected_anchor_idx = tf.where(tf.equal(valid_flags, 1))[:, 0]
        anchors = tf.gather(all_anchors, selected_anchor_idx)
        gt_bboxes = tf.cast(gt_bboxes, anchors.dtype)
        # 2. Find IoUs
        target_matchs = -tf.ones((tf.shape(anchors)[0],), tf.int32)
        overlaps = geometry.compute_overlaps(anchors, gt_bboxes)  # [anchors_size, gt_bboxes_size]
        argmax_overlaps = tf.argmax(overlaps, axis=1, output_type=tf.int32)
        max_overlaps = tf.reduce_max(overlaps, axis=1)
        gt_max_overlaps = tf.reduce_max(overlaps, axis=0)
        gt_argmax_overlaps = tf.where(tf.equal(overlaps, gt_max_overlaps))[:, 0]

        # Assign labels
        bg_cond = tf.math.less(max_overlaps, self.neg_iou_thr)
        target_matchs = tf.where(bg_cond, tf.zeros_like(target_matchs), target_matchs)
        gt_indices = tf.expand_dims(gt_argmax_overlaps, axis=1)
        gt_labels = tf.ones(tf.shape(gt_indices)[0], dtype=tf.int32)
        target_matchs = tf.tensor_scatter_nd_update(target_matchs, gt_indices, gt_labels)
        fg_cond = tf.math.greater_equal(max_overlaps, self.pos_iou_thr)
        target_matchs = tf.where(fg_cond, tf.ones_like(target_matchs), target_matchs)

        # Sample selected if more than that required
        fg_inds = tf.where(tf.equal(target_matchs, 1))[:, 0]
        max_pos_samples = tf.cast(self.positive_fraction * self.num_rpn_deltas, tf.int32)
        if tf.greater(tf.size(fg_inds), max_pos_samples):
            fg_inds = tf.random.shuffle(fg_inds)
            disable_inds = fg_inds[max_pos_samples:]
            fg_inds = fg_inds[:max_pos_samples]
            disable_inds = tf.expand_dims(disable_inds, axis=1)
            disable_labels = -tf.ones(tf.shape(disable_inds)[0], dtype=tf.int32)
            target_matchs = tf.tensor_scatter_nd_update(target_matchs, disable_inds, disable_labels)
        num_bg = self.num_rpn_deltas - tf.reduce_sum(tf.cast(tf.equal(target_matchs, 1), tf.int32))
        bg_inds = tf.where(tf.equal(target_matchs, 0))[:, 0]
        if tf.greater(tf.size(bg_inds), num_bg):
            bg_inds = tf.random.shuffle(bg_inds)
            disable_inds = bg_inds[num_bg:]
            bg_inds = bg_inds[:num_bg]
            disable_inds = tf.expand_dims(disable_inds, axis=1)
            disable_labels = -tf.ones(tf.shape(disable_inds)[0], dtype=tf.int32)
            target_matchs = tf.tensor_scatter_nd_update(target_matchs, disable_inds, disable_labels)
        # tf.print('anchor target generated %d fgs and %d bgs.' % (tf.size(fg_inds), tf.size(bg_inds)))

        # Calculate deltas for chosen targets based on GT
        bboxes_targets = transforms.bbox2delta(anchors, tf.gather(gt_bboxes, argmax_overlaps),
                                                       target_means=self.target_means,
                                                       target_stds=self.target_stds)

        # Regression weights
        bbox_inside_weights = tf.zeros((tf.shape(anchors)[0], 4), dtype=tf.float32)
        match_indices = tf.where(tf.equal(target_matchs, 1))
        updates = tf.ones([tf.shape(match_indices)[0], 4], bbox_inside_weights.dtype)
        bbox_inside_weights = tf.tensor_scatter_nd_update(bbox_inside_weights,
                                                match_indices, updates)

        bbox_outside_weights = tf.zeros((tf.shape(anchors)[0], 4), dtype=tf.float32)
        num_examples = tf.reduce_sum(tf.cast(target_matchs >= 0, bbox_outside_weights.dtype))
        out_indices = tf.where(target_matchs >= 0)
        updates = tf.ones([tf.shape(out_indices)[0], 4], bbox_outside_weights.dtype) * 1.0 / num_examples
        bbox_outside_weights = tf.tensor_scatter_nd_update(bbox_outside_weights,
                                                out_indices, updates)
        # for everything that is not selected fill with `fill` value
        return (tf.stop_gradient(_unmap(target_matchs, total_anchors, selected_anchor_idx, -1)),
               tf.stop_gradient(_unmap(bboxes_targets, total_anchors, selected_anchor_idx, 0)),
               tf.stop_gradient(_unmap(bbox_inside_weights, total_anchors, selected_anchor_idx, 0)),
               tf.stop_gradient(_unmap(bbox_outside_weights, total_anchors, selected_anchor_idx, 0)))