Esempio n. 1
0
    def test_MaxValueEntropySearch_MultiFidelity(self):
        model = MaxValueEntropySearch()
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            bounds=self.bounds,
            task_features=[],
            feature_names=self.feature_names,
            metric_names=self.metric_names,
            fidelity_features=[-1],
        )

        # Check best point selection within bounds (some numerical tolerance)
        xbest = model.best_point(
            bounds=self.bounds,
            objective_weights=self.objective_weights,
            target_fidelities={2: 5.0},
        )
        lb = torch.tensor([b[0] for b in self.bounds]) - 1e-5
        ub = torch.tensor([b[1] for b in self.bounds]) + 1e-5
        self.assertTrue(torch.all(xbest <= ub))
        self.assertTrue(torch.all(xbest >= lb))

        # check error when no target fidelities are specified
        with self.assertRaises(RuntimeError):
            model.best_point(bounds=self.bounds,
                             objective_weights=self.objective_weights)

        # check error when target fidelity and fixed features have the same key
        with self.assertRaises(RuntimeError):
            model.best_point(
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                target_fidelities={2: 1.0},
                fixed_features={2: 1.0},
            )

        # check generation
        n = 1
        new_X_dummy = torch.rand(1, n, 3, dtype=self.dtype, device=self.device)
        with mock.patch(self.optimize_acqf, side_effect=[
            (new_X_dummy, None)
        ]) as mock_optimize_acqf:
            Xgen, wgen, _, __ = model.gen(
                n=n,
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                outcome_constraints=None,
                linear_constraints=None,
                model_gen_options={
                    "acquisition_function_kwargs": self.acq_options,
                    "optimizer_kwargs": self.optimizer_options,
                },
                target_fidelities={2: 1.0},
            )
            self.assertTrue(torch.equal(Xgen, new_X_dummy.cpu()))
            self.assertTrue(torch.equal(wgen, torch.ones(n, dtype=self.dtype)))
            mock_optimize_acqf.assert_called()
Esempio n. 2
0
    def test_instantiate_MES(self):

        model = MaxValueEntropySearch()
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            bounds=self.bounds,
            feature_names=self.feature_names,
            metric_names=self.metric_names,
            task_features=[],
            fidelity_features=[],
        )

        # test acquisition setting
        X_dummy = torch.ones(1, 3, dtype=self.dtype, device=self.device)
        candidate_set = torch.rand(10, 3, dtype=self.dtype, device=self.device)
        acq_function = _instantiate_MES(model=model.model, candidate_set=candidate_set)

        self.assertIsInstance(acq_function, qMaxValueEntropy)
        self.assertIsInstance(acq_function.sampler, SobolQMCNormalSampler)
        self.assertIsInstance(acq_function.fantasies_sampler, SobolQMCNormalSampler)
        self.assertEqual(acq_function.num_fantasies, 16)
        self.assertEqual(acq_function.num_mv_samples, 10)
        self.assertEqual(acq_function.use_gumbel, True)
        self.assertEqual(acq_function.maximize, True)

        acq_function = _instantiate_MES(
            model=model.model, candidate_set=candidate_set, X_pending=X_dummy
        )
        self.assertTrue(torch.equal(acq_function.X_pending, X_dummy))

        # multi-fidelity tests
        model = MaxValueEntropySearch()
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            bounds=self.bounds,
            task_features=[],
            feature_names=self.feature_names,
            metric_names=self.metric_names,
            fidelity_features=[-1],
        )

        candidate_set = torch.rand(10, 3, dtype=self.dtype, device=self.device)
        acq_function = _instantiate_MES(
            model=model.model, candidate_set=candidate_set, target_fidelities={2: 1.0}
        )
        self.assertIsInstance(acq_function, qMultiFidelityMaxValueEntropy)
        self.assertEqual(acq_function.expand(self.Xs), self.Xs)

        # test error that target fidelity and fidelity weight indices must match
        with self.assertRaises(RuntimeError):
            _instantiate_MES(
                model=model.model,
                candidate_set=candidate_set,
                target_fidelities={1: 1.0},
                fidelity_weights={2: 1.0},
            )
Esempio n. 3
0
    def test_MaxValueEntropySearch(self):

        model = MaxValueEntropySearch()
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            bounds=self.bounds,
            feature_names=self.feature_names,
            metric_names=self.metric_names,
            task_features=[],
            fidelity_features=[],
        )

        # test model.gen()
        new_X_dummy = torch.rand(1, 1, 3, dtype=self.dtype, device=self.device)
        with mock.patch(self.optimize_acqf) as mock_optimize_acqf:
            mock_optimize_acqf.side_effect = [(new_X_dummy, None)]
            Xgen, wgen, _ = model.gen(
                n=1,
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                outcome_constraints=None,
                linear_constraints=None,
                model_gen_options={
                    "acquisition_function_kwargs": self.acq_options,
                    "optimizer_kwargs": self.optimizer_options,
                },
            )
            self.assertTrue(torch.equal(Xgen, new_X_dummy.cpu()))
            self.assertTrue(torch.equal(wgen, torch.ones(1, dtype=self.dtype)))
            mock_optimize_acqf.assert_called_once()

        # test model.best_point()
        best_point_dummy = torch.rand(1,
                                      3,
                                      dtype=self.dtype,
                                      device=self.device)
        with mock.patch(self.optimize_acqf) as mock_optimize_acqf:
            mock_optimize_acqf.side_effect = [(best_point_dummy, None)]
            rec_point = model.best_point(
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                outcome_constraints=None,
                linear_constraints=None,
                model_gen_options={
                    "acquisition_function_kwargs": self.acq_options,
                    "optimizer_kwargs": self.optimizer_options,
                },
            )
            self.assertTrue(
                torch.equal(rec_point,
                            best_point_dummy.cpu().view(-1)))
            mock_optimize_acqf.assert_called_once()

        # test error message in case of constraints
        linear_constraints = (
            torch.tensor([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]),
            torch.tensor([[0.5], [1.0]]),
        )
        with self.assertRaises(UnsupportedError):
            Xgen, wgen, _ = model.gen(
                n=1,
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                linear_constraints=linear_constraints,
            )

        # test error message in case of >1 objective weights
        objective_weights = torch.tensor([1.0, 1.0],
                                         dtype=self.dtype,
                                         device=self.device)
        with self.assertRaises(UnsupportedError):
            Xgen, wgen, _ = model.gen(n=1,
                                      bounds=self.bounds,
                                      objective_weights=objective_weights)

        # test error message in best_point()
        with self.assertRaises(UnsupportedError):
            Xgen = model.best_point(
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                linear_constraints=linear_constraints,
            )

        with self.assertRaises(RuntimeError):
            Xgen = model.best_point(
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                target_fidelities={2: 1.0},
            )
Esempio n. 4
0
    def test_MaxValueEntropySearch(self):

        model = MaxValueEntropySearch()
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            search_space_digest=SearchSpaceDigest(
                feature_names=self.feature_names,
                bounds=self.bounds,
            ),
            metric_names=self.metric_names,
        )

        # test model.gen()
        new_X_dummy = torch.rand(1, 1, 3, dtype=self.dtype, device=self.device)
        with mock.patch(self.optimize_acqf) as mock_optimize_acqf:
            mock_optimize_acqf.side_effect = [(new_X_dummy, None)]
            Xgen, wgen, _, __ = model.gen(
                n=1,
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                outcome_constraints=None,
                linear_constraints=None,
                model_gen_options={
                    "acquisition_function_kwargs": self.acq_options,
                    "optimizer_kwargs": self.optimizer_options,
                },
            )
            self.assertTrue(torch.equal(Xgen, new_X_dummy.cpu()))
            self.assertTrue(torch.equal(wgen, torch.ones(1, dtype=self.dtype)))
            mock_optimize_acqf.assert_called_once()

        # Check best point selection within bounds (some numerical tolerance)
        xbest = model.best_point(
            bounds=self.bounds,
            objective_weights=self.objective_weights,
            outcome_constraints=None,
            linear_constraints=None,
            model_gen_options={
                "acquisition_function_kwargs": self.acq_options,
                "optimizer_kwargs": self.optimizer_options,
            },
        )
        lb = torch.tensor([b[0] for b in self.bounds]) - 1e-5
        ub = torch.tensor([b[1] for b in self.bounds]) + 1e-5
        self.assertTrue(torch.all(xbest <= ub))
        self.assertTrue(torch.all(xbest >= lb))

        # test error message in case of constraints
        linear_constraints = (
            torch.tensor([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]),
            torch.tensor([[0.5], [1.0]]),
        )
        with self.assertRaises(UnsupportedError):
            Xgen, wgen, _, __ = model.gen(
                n=1,
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                linear_constraints=linear_constraints,
            )

        # test error message in case of >1 objective weights
        objective_weights = torch.tensor(
            [1.0, 1.0], dtype=self.dtype, device=self.device
        )
        with self.assertRaises(UnsupportedError):
            Xgen, wgen, _, __ = model.gen(
                n=1, bounds=self.bounds, objective_weights=objective_weights
            )

        # test error message in best_point()
        with self.assertRaises(UnsupportedError):
            Xgen = model.best_point(
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                linear_constraints=linear_constraints,
            )

        with self.assertRaises(RuntimeError):
            Xgen = model.best_point(
                bounds=self.bounds,
                objective_weights=self.objective_weights,
                target_fidelities={2: 1.0},
            )
        # test input warping
        self.assertFalse(model.use_input_warping)
        model = MaxValueEntropySearch(use_input_warping=True)
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            search_space_digest=SearchSpaceDigest(
                feature_names=self.feature_names,
                bounds=self.bounds,
            ),
            metric_names=self.metric_names,
        )
        self.assertTrue(model.use_input_warping)
        self.assertTrue(hasattr(model.model, "input_transform"))
        self.assertIsInstance(model.model.input_transform, Warp)

        # test loocv pseudo likelihood
        self.assertFalse(model.use_loocv_pseudo_likelihood)
        model = MaxValueEntropySearch(use_loocv_pseudo_likelihood=True)
        model.fit(
            Xs=self.Xs,
            Ys=self.Ys,
            Yvars=self.Yvars,
            search_space_digest=SearchSpaceDigest(
                feature_names=self.feature_names,
                bounds=self.bounds,
            ),
            metric_names=self.metric_names,
        )
        self.assertTrue(model.use_loocv_pseudo_likelihood)