Esempio n. 1
0
    def test_memory_depth_filtering(self, min_memory_depth, max_memory_depth,
                                    memory_depth):

        min_comprehension = set([
            s for s in all_strategies
            if s.classifier['memory_depth'] >= min_memory_depth
        ])
        min_filterset = {'min_memory_depth': min_memory_depth}
        min_filtered = set(filtered_strategies(min_filterset))
        self.assertEqual(min_comprehension, min_filtered)

        max_comprehension = set([
            s for s in all_strategies
            if s.classifier['memory_depth'] <= max_memory_depth
        ])
        max_filterset = {'max_memory_depth': max_memory_depth}
        max_filtered = set(filtered_strategies(max_filterset))
        self.assertEqual(max_comprehension, max_filtered)

        comprehension = set([
            s for s in all_strategies
            if s.classifier['memory_depth'] == memory_depth
        ])
        filterset = {'memory_depth': memory_depth}
        filtered = set(filtered_strategies(filterset))
        self.assertEqual(comprehension, filtered)
Esempio n. 2
0
    def test_memory_depth_filtering(self, min_memory_depth, max_memory_depth,
                                    memory_depth, strategies):

        min_comprehension = set([
            s for s in strategies
            if s().classifier["memory_depth"] >= min_memory_depth
        ])
        min_filterset = {"min_memory_depth": min_memory_depth}
        min_filtered = set(
            filtered_strategies(min_filterset, strategies=strategies))
        self.assertEqual(min_comprehension, min_filtered)

        max_comprehension = set([
            s for s in strategies
            if s().classifier["memory_depth"] <= max_memory_depth
        ])
        max_filterset = {"max_memory_depth": max_memory_depth}
        max_filtered = set(
            filtered_strategies(max_filterset, strategies=strategies))
        self.assertEqual(max_comprehension, max_filtered)

        comprehension = set([
            s for s in strategies
            if s().classifier["memory_depth"] == memory_depth
        ])
        filterset = {"memory_depth": memory_depth}
        filtered = set(filtered_strategies(filterset, strategies=strategies))
        self.assertEqual(comprehension, filtered)
Esempio n. 3
0
    def test_memory_depth_filtering(self, min_memory_depth, max_memory_depth,
                                    memory_depth):

        min_comprehension = set([
            s for s in all_strategies if
            s.classifier['memory_depth'] >= min_memory_depth])
        min_filterset = {
            'min_memory_depth': min_memory_depth
        }
        min_filtered = set(filtered_strategies(min_filterset))
        self.assertEqual(min_comprehension, min_filtered)

        max_comprehension = set([
            s for s in all_strategies if
            s.classifier['memory_depth'] <= max_memory_depth])
        max_filterset = {
            'max_memory_depth': max_memory_depth
        }
        max_filtered = set(filtered_strategies(max_filterset))
        self.assertEqual(max_comprehension, max_filtered)

        comprehension = set([
            s for s in all_strategies if
            s.classifier['memory_depth'] == memory_depth])
        filterset = {
            'memory_depth': memory_depth
        }
        filtered = set(filtered_strategies(filterset))
        self.assertEqual(comprehension, filtered)
Esempio n. 4
0
    def test_filtered_strategies(self):

        class StochasticTestStrategy(object):
            classifier = {
                'stochastic': True,
                'memory_depth': float('inf'),
                'makes_use_of': []
            }

        class MemoryDepth2TestStrategy(object):
            classifier = {
                'stochastic': False,
                'memory_depth': 2,
                'makes_use_of': []
            }

        class UsesLengthTestStrategy(object):
            classifier = {
                'stochastic': True,
                'memory_depth': float('inf'),
                'makes_use_of': ['length']
            }

        strategies = [
            StochasticTestStrategy,
            MemoryDepth2TestStrategy,
            UsesLengthTestStrategy
        ]

        stochastic_filterset = {
            'stochastic': True
        }

        deterministic_filterset = {
            'stochastic': False
        }

        uses_length_filterset = {
            'stochastic': True,
            'makes_use_of': ['length']
        }

        self.assertEqual(
            filtered_strategies(stochastic_filterset, strategies),
            [StochasticTestStrategy, UsesLengthTestStrategy])
        self.assertEqual(
            filtered_strategies(deterministic_filterset, strategies),
            [MemoryDepth2TestStrategy])
        self.assertEqual(
            filtered_strategies(uses_length_filterset, strategies),
            [UsesLengthTestStrategy])
Esempio n. 5
0
    def test_filtered_strategies(self):

        class StochasticTestStrategy(object):
            classifier = {
                'stochastic': True,
                'memory_depth': float('inf'),
                'makes_use_of': []
            }

        class MemoryDepth2TestStrategy(object):
            classifier = {
                'stochastic': False,
                'memory_depth': 2,
                'makes_use_of': []
            }

        class UsesLengthTestStrategy(object):
            classifier = {
                'stochastic': True,
                'memory_depth': float('inf'),
                'makes_use_of': ['length']
            }

        strategies = [
            StochasticTestStrategy,
            MemoryDepth2TestStrategy,
            UsesLengthTestStrategy
        ]

        stochastic_filterset = {
            'stochastic': True
        }

        deterministic_filterset = {
            'stochastic': False
        }

        uses_length_filterset = {
            'stochastic': True,
            'makes_use_of': ['length']
        }

        self.assertEqual(
            filtered_strategies(stochastic_filterset, strategies),
            [StochasticTestStrategy, UsesLengthTestStrategy])
        self.assertEqual(
            filtered_strategies(deterministic_filterset, strategies),
            [MemoryDepth2TestStrategy])
        self.assertEqual(
            filtered_strategies(uses_length_filterset, strategies),
            [UsesLengthTestStrategy])
Esempio n. 6
0
    def test_filtered_strategies(self):
        class StochasticTestStrategy(object):
            classifier = {
                "stochastic": True,
                "memory_depth": float("inf"),
                "makes_use_of": [],
            }

        class MemoryDepth2TestStrategy(object):
            classifier = {
                "stochastic": False,
                "memory_depth": 2,
                "makes_use_of": []
            }

        class UsesLengthTestStrategy(object):
            classifier = {
                "stochastic": True,
                "memory_depth": float("inf"),
                "makes_use_of": ["length"],
            }

        strategies = [
            StochasticTestStrategy,
            MemoryDepth2TestStrategy,
            UsesLengthTestStrategy,
        ]

        stochastic_filterset = {"stochastic": True}

        deterministic_filterset = {"stochastic": False}

        uses_length_filterset = {
            "stochastic": True,
            "makes_use_of": ["length"]
        }

        self.assertEqual(
            filtered_strategies(stochastic_filterset, strategies),
            [StochasticTestStrategy, UsesLengthTestStrategy],
        )
        self.assertEqual(
            filtered_strategies(deterministic_filterset, strategies),
            [MemoryDepth2TestStrategy],
        )
        self.assertEqual(
            filtered_strategies(uses_length_filterset, strategies),
            [UsesLengthTestStrategy],
        )
Esempio n. 7
0
def filter_strategies(request):
    """
    Take the incoming request object, convert the strings in its
    query_params dictionary into the types required by the axelrod
    filtering function and pass the resulting dictionary into that
    filtering function.
    """

    params = request.query_params

    filter_types = {
        strtobool: [
            'stochastic', 'long_run_time', 'manipulates_state',
            'manipulates_source', 'inpsects_source'
        ],
        int: ['memory_depth', 'min_memory_depth', 'max_memory_depth'],
    }

    filterset = {
        _filter: convert_type(params[_filter])
        for convert_type, filters in filter_types.items()
        for _filter in filters if _filter in params
    }

    if 'makes_use_of' in params:
        filterset['makes_use_of'] = params.getlist('makes_use_of')
    return axl.filtered_strategies(filterset)
Esempio n. 8
0
    def test_makes_use_of_filtering(self, seed_):
        """
        Test equivalent filtering using two approaches.

        This needs to be seeded as some players classification is random.
        """
        classifiers = [
            ['game'],
            ['length'],
            ['game', 'length']
        ]

        for classifier in classifiers:
            seed(seed_)
            comprehension = set([
                s for s in all_strategies if
                set(classifier).issubset(set(s().classifier['makes_use_of']))
            ])

            seed(seed_)
            filterset = {
                'makes_use_of': classifier
            }
            filtered = set(filtered_strategies(filterset))

            self.assertEqual(comprehension, filtered,
                             msg="classifier: {}".format(classifier))
Esempio n. 9
0
    def test_makes_use_of_filtering(self, seed_, strategies):
        """
        Test equivalent filtering using two approaches.

        This needs to be seeded as some players classification is random.
        """
        classifiers = [["game"], ["length"], ["game", "length"]]

        for classifier in classifiers:
            axl.seed(seed_)
            comprehension = set(
                [
                    s
                    for s in strategies
                    if set(classifier).issubset(set(axl.Classifiers["makes_use_of"](s)))
                ]
            )

            axl.seed(seed_)
            filterset = {"makes_use_of": classifier}
            filtered = set(axl.filtered_strategies(filterset, strategies=strategies))

            self.assertEqual(
                comprehension, filtered, msg="classifier: {}".format(classifier)
            )
Esempio n. 10
0
    def test_makes_use_of_filtering(self, seed_, strategies):
        """
        Test equivalent filtering using two approaches.

        This needs to be seeded as some players classification is random.
        """
        classifiers = [["game"], ["length"], ["game", "length"]]

        for classifier in classifiers:
            seed(seed_)
            comprehension = set(
                [
                    s
                    for s in strategies
                    if set(classifier).issubset(set(s().classifier["makes_use_of"]))
                ]
            )

            seed(seed_)
            filterset = {"makes_use_of": classifier}
            filtered = set(filtered_strategies(filterset, strategies=strategies))

            self.assertEqual(
                comprehension, filtered, msg="classifier: {}".format(classifier)
            )
Esempio n. 11
0
def filter_strategies(request):
    """
    Take the incoming request object, convert the strings in its
    query_params dictionary into the types required by the axelrod
    filtering function and pass the resulting dictionary into that
    filtering function.
    """

    params = request.query_params

    filter_types = {
        strtobool: [
            'stochastic',
            'long_run_time',
            'manipulates_state',
            'manipulates_source',
            'inpsects_source'
        ],
        int: [
            'memory_depth',
            'min_memory_depth',
            'max_memory_depth'
        ],
    }

    filterset = {
        _filter: convert_type(params[_filter])
        for convert_type, filters in filter_types.items()
        for _filter in filters if _filter in params
    }

    if 'makes_use_of' in params:
        filterset['makes_use_of'] = params.getlist('makes_use_of')
    return axl.filtered_strategies(filterset)
Esempio n. 12
0
    def test_filtered_strategies(self):
        class StochasticTestStrategy(object):
            classifier = {
                "stochastic": True,
                "memory_depth": float("inf"),
                "makes_use_of": [],
            }

        class MemoryDepth2TestStrategy(object):
            classifier = {"stochastic": False, "memory_depth": 2, "makes_use_of": []}

        class UsesLengthTestStrategy(object):
            classifier = {
                "stochastic": True,
                "memory_depth": float("inf"),
                "makes_use_of": ["length"],
            }

        strategies = [
            StochasticTestStrategy,
            MemoryDepth2TestStrategy,
            UsesLengthTestStrategy,
        ]

        stochastic_filterset = {"stochastic": True}

        deterministic_filterset = {"stochastic": False}

        uses_length_filterset = {"stochastic": True, "makes_use_of": ["length"]}

        self.assertEqual(
            filtered_strategies(stochastic_filterset, strategies),
            [StochasticTestStrategy, UsesLengthTestStrategy],
        )
        self.assertEqual(
            filtered_strategies(deterministic_filterset, strategies),
            [MemoryDepth2TestStrategy],
        )
        self.assertEqual(
            filtered_strategies(uses_length_filterset, strategies),
            [UsesLengthTestStrategy],
        )
Esempio n. 13
0
    def test_makes_use_of_filtering(self):
        classifiers = [['game'], ['length'], ['game', 'length']]

        for classifier in classifiers:
            comprehension = set([
                s for s in all_strategies
                if set(classifier).issubset(set(s.classifier['makes_use_of']))
            ])
            filterset = {'makes_use_of': classifier}
            filtered = set(filtered_strategies(filterset))
            self.assertEqual(comprehension, filtered)
Esempio n. 14
0
    def test_boolean_filtering(self):

        classifiers = [
            'stochastic', 'long_run_time', 'manipulates_state',
            'manipulates_source', 'inspects_source'
        ]

        for classifier in classifiers:
            comprehension = set(
                [s for s in all_strategies if s.classifier[classifier]])
            filterset = {classifier: True}
        filtered = set(filtered_strategies(filterset))
        self.assertEqual(comprehension, filtered)
Esempio n. 15
0
    def test_memory_depth_filtering(
        self, min_memory_depth, max_memory_depth, memory_depth,
        strategies
    ):

        min_comprehension = set(
            [
                s
                for s in strategies
                if s().classifier["memory_depth"] >= min_memory_depth
            ]
        )
        min_filterset = {"min_memory_depth": min_memory_depth}
        min_filtered = set(filtered_strategies(min_filterset,
                                               strategies=strategies))
        self.assertEqual(min_comprehension, min_filtered)

        max_comprehension = set(
            [
                s
                for s in strategies
                if s().classifier["memory_depth"] <= max_memory_depth
            ]
        )
        max_filterset = {"max_memory_depth": max_memory_depth}
        max_filtered = set(filtered_strategies(max_filterset,
                                               strategies=strategies))
        self.assertEqual(max_comprehension, max_filtered)

        comprehension = set(
            [
                s
                for s in strategies
                if s().classifier["memory_depth"] == memory_depth
            ]
        )
        filterset = {"memory_depth": memory_depth}
        filtered = set(filtered_strategies(filterset, strategies=strategies))
        self.assertEqual(comprehension, filtered)
Esempio n. 16
0
def selected_players(extra_players=fsm_players):
    """
    Return a list of all players used in this paper
    """
    filterset = {"long_run_time": False,
                 "manipulates_source": False,
                 "manipulates_state": False,
                 "inspects_source": False}
    players = [s() for s in axl.filtered_strategies(filterset)]

    if extra_players is not None:
        players += extra_players

    return players
Esempio n. 17
0
    def test_boolean_filtering(self, strategies):

        classifiers = [
            "stochastic",
            "long_run_time",
            "manipulates_state",
            "manipulates_source",
            "inspects_source",
        ]

        for classifier in classifiers:
            comprehension = set([s for s in strategies if s.classifier[classifier]])
            filterset = {classifier: True}
        filtered = set(filtered_strategies(filterset, strategies=strategies))
        self.assertEqual(comprehension, filtered)
Esempio n. 18
0
    def test_boolean_filtering(self, strategies):

        classifiers = [
            "stochastic",
            "long_run_time",
            "manipulates_state",
            "manipulates_source",
            "inspects_source",
        ]

        for classifier in classifiers:
            comprehension = set(filter(axl.Classifiers[classifier], strategies))
            filterset = {classifier: True}
        filtered = set(axl.filtered_strategies(filterset, strategies=strategies))
        self.assertEqual(comprehension, filtered)
Esempio n. 19
0
def selected_players(extra_players=fsm_players):
    """
    Return a list of all players used in this paper
    """
    filterset = {
        "long_run_time": False,
        "manipulates_source": False,
        "manipulates_state": False,
        "inspects_source": False
    }
    players = [s() for s in axl.filtered_strategies(filterset)]

    if extra_players is not None:
        players += extra_players

    return players
Esempio n. 20
0
    def test_makes_use_of_filtering(self):
        classifiers = [
            ['game'],
            ['length'],
            ['game', 'length']
        ]

        for classifier in classifiers:
            comprehension = set([
                s for s in all_strategies if
                set(classifier).issubset(set(s.classifier['makes_use_of']))
            ])
            filterset = {
                'makes_use_of': classifier
            }
            filtered = set(filtered_strategies(filterset))
            self.assertEqual(comprehension, filtered)
Esempio n. 21
0
    def test_boolean_filtering(self):

        classifiers = [
            'stochastic',
            'long_run_time',
            'manipulates_state',
            'manipulates_source',
            'inspects_source']

        for classifier in classifiers:
            comprehension = set([
                s for s in all_strategies if
                s.classifier[classifier]])
            filterset = {
                classifier: True
            }
        filtered = set(filtered_strategies(filterset))
        self.assertEqual(comprehension, filtered)
Esempio n. 22
0
    def test_makes_use_of_filtering(self, strategies):
        """
        Test equivalent filtering using two approaches.
        """
        classifiers = [["game"], ["length"], ["game", "length"]]

        for classifier in classifiers:
            comprehension = set(
                [
                    s
                    for s in strategies
                    if set(classifier).issubset(set(axl.Classifiers["makes_use_of"](s)))
                ]
            )

            filterset = {"makes_use_of": classifier}
            filtered = set(axl.filtered_strategies(filterset, strategies=strategies))

            self.assertEqual(
                comprehension, filtered, msg="classifier: {}".format(classifier)
            )
Esempio n. 23
0
def who_is_playing(num_of_opponents, long_run_strategies=False):
    """
    A function to choose which strategies will be playing against the Defector, where:

    'num_of_opponents' is a numeric variable which states how many players will 
    be competing (EXCLUDING the Defector); and

    'long_run_strategies' is a Boolean variable which states whether strategies 
    which have a long running time should be included in the competitors or 
    not. It has a default value of False.

    A list containing the selected strategies is returned.
    """

    if long_run_strategies == True:
        filterstrategies = {
            "manipulates_state": False,
            "manipulates_source": False,
            "inspects_source": False,
        }
    else:
        filterstrategies = {
            "long_run_time": False,
            "manipulates_state": False,
            "manipulates_source": False,
            "inspects_source": False,
        }

    filtered_strategies = axl.filtered_strategies(filterstrategies)
    filtered_strategies.remove(axl.Defector)

    opponent_strategies = random.sample(filtered_strategies, num_of_opponents)
    list_of_players = [opponent() for opponent in opponent_strategies]
    list_of_players.append(axl.Defector())

    return list_of_players