Esempio n. 1
0
    def _plot(self, axes_list, data = None):
        # COMMENT_ME

        if data is None:
            data = self.data

        if data:
            plot_counts(axes_list[0], data['counts'], data['time'],'time [sec]')
Esempio n. 2
0
 def plot_data(axes_list, data):
     plot_counts(
         axes_list[0], data['fluor_vector'],
         np.linspace(data['extent'][0], data['extent'][1],
                     len(data['fluor_vector'])), 'z [V]')
     if data['maximum_point'] and data['max_fluor']:
         axes_list[0].hold(True)
         axes_list[0].plot(data['maximum_point'], data['max_fluor'], 'ro')
         axes_list[0].hold(False)
 def _update_plot(self, axes_list):
     """
     updates the galvo scan image
     Args:
         axes_list: list of axes objects on which to plot plots the esr on the first axes object
     """
     if np.ndim(self.data['image_data'])==2:
         update_fluorescence(self.data['image_data'], axes_list[0], self.settings['min_counts_plot'], self.settings['max_counts_plot'])
     elif np.ndim(self.data['image_data']) == 1:
         plot_counts(axes_list[0], self.data['image_data'], np.linspace(self.data['bounds'][0],self.data['bounds'][1],len(self.data['image_data'])), self.data['varlbls'])
    def _plot(self, axes_list, data=None):
        """
        Plots the confocal scan image
        Args:
            axes_list: list of axes objects on which to plot the galvo scan on the first axes object
            data: data (dictionary that contains keys image_data, extent) if not provided use self.data
        """
        if data is None:
            data = self.data
        # plot_fluorescence_new(data['image_data'], data['extent'], self.data['varcalib'], self.data['varlbls'], self.data['varinitialpos'], axes_list[0], min_counts=self.settings['min_counts_plot'], max_counts=self.settings['max_counts_plot'])

        if np.ndim(data['image_data'])==2:
            plot_fluorescence_new(data['image_data'], data['extent'], self.data['varlbls'], self.data['varinitialpos'], axes_list[0], min_counts=self.settings['min_counts_plot'], max_counts=self.settings['max_counts_plot'])
        elif np.ndim(data['image_data'])==1:
            plot_counts(axes_list[0], data['image_data'],np.linspace(data['bounds'][0],data['bounds'][1],len(data['image_data'])),data['varlbls'])