Esempio n. 1
0
def test_SVC_predict():
    from b4msa.classifier import SVC
    from b4msa.textmodel import TextModel
    from b4msa.utils import read_data_labels
    import os
    fname = os.path.dirname(__file__) + '/text.json'
    X, y = read_data_labels(fname)
    t = TextModel(X)
    c = SVC(t)
    c.fit_file(fname)
    y = c.predict_text('Excelente dia b4msa')
    assert y == 'POS'
Esempio n. 2
0
def test_SVC_predict_from_file():
    from b4msa.classifier import SVC
    from b4msa.textmodel import TextModel
    from b4msa.utils import read_data_labels
    import os
    fname = os.path.dirname(__file__) + '/text.json'
    X, y = read_data_labels(fname)
    t = TextModel(X)
    c = SVC(t)
    c.fit_file(fname)
    y = c.predict_file(fname)
    for i in y:
        assert i in ['POS', 'NEU', 'NEG']
Esempio n. 3
0
def test_SVC_predict_from_file():
    from b4msa.classifier import SVC
    from b4msa.textmodel import TextModel
    from b4msa.utils import read_data_labels
    import os
    #fname = os.path.dirname(__file__) + '/text.json'
    fname = 'text.json'
    #fname = 'test_text.json'
    X, y = read_data_labels(fname)
    t = TextModel(X)
    c = SVC(t)
    c.fit_file(fname)
    y = c.predict_file("test_text.json")
    print "Final Labels"
    print y