def test_SVC_predict(): from b4msa.classifier import SVC from b4msa.textmodel import TextModel from b4msa.utils import read_data_labels import os fname = os.path.dirname(__file__) + '/text.json' X, y = read_data_labels(fname) t = TextModel(X) c = SVC(t) c.fit_file(fname) y = c.predict_text('Excelente dia b4msa') assert y == 'POS'
def test_SVC_predict_from_file(): from b4msa.classifier import SVC from b4msa.textmodel import TextModel from b4msa.utils import read_data_labels import os fname = os.path.dirname(__file__) + '/text.json' X, y = read_data_labels(fname) t = TextModel(X) c = SVC(t) c.fit_file(fname) y = c.predict_file(fname) for i in y: assert i in ['POS', 'NEU', 'NEG']
def test_SVC_predict_from_file(): from b4msa.classifier import SVC from b4msa.textmodel import TextModel from b4msa.utils import read_data_labels import os #fname = os.path.dirname(__file__) + '/text.json' fname = 'text.json' #fname = 'test_text.json' X, y = read_data_labels(fname) t = TextModel(X) c = SVC(t) c.fit_file(fname) y = c.predict_file("test_text.json") print "Final Labels" print y