def segmentation_task(tmpdir): model = nn.Sequential(nn.Conv2d(3, 32, 3), nn.ReLU(), nn.Conv2d(32, 64, 3), nn.MaxPool2d(2), nn.Conv2d(64, 64, 3), Dropout2d(), nn.ConvTranspose2d(64, 10, 3, 1)) model = ModelWrapper(model, nn.CrossEntropyLoss()) test = datasets.CIFAR10(tmpdir, train=False, download=True, transform=transforms.ToTensor()) return model, test
def classification_task(tmpdir): model = nn.Sequential(nn.Conv2d(3, 32, 3), nn.ReLU(), nn.Conv2d(32, 64, 3), nn.MaxPool2d(2), nn.AdaptiveAvgPool2d((7, 7)), Flatten(), nn.Linear(7 * 7 * 64, 128), Dropout(), nn.Linear(128, 10)) model = ModelWrapper(model, nn.CrossEntropyLoss()) test = datasets.CIFAR10(tmpdir, train=False, download=True, transform=transforms.ToTensor()) return model, test
def segmentation_task(tmpdir): model = nn.Sequential(nn.Conv2d(3, 32, 3), nn.ReLU(), nn.Conv2d(32, 64, 3), nn.MaxPool2d(2), nn.Conv2d(64, 64, 3), Dropout2d(), nn.ConvTranspose2d(64, 10, 3, 1) ) model = ModelWrapper(model, nn.CrossEntropyLoss()) test = SimpleDataset() return model, test
def __init__(self, exp_dict): super().__init__() self.backbone = models.vgg16( pretrained=exp_dict["imagenet_pretraining"], progress=True) num_ftrs = self.backbone.classifier[-1].in_features self.backbone.classifier[-1] = torch.nn.Linear(num_ftrs, exp_dict["num_classes"]) self.backbone = patch_module(self.backbone) self.initial_weights = deepcopy(self.backbone.state_dict()) self.backbone.cuda() self.batch_size = exp_dict['batch_size'] self.calibrate = exp_dict.get('calibrate', False) self.learning_epoch = exp_dict['learning_epoch'] self.optimizer = torch.optim.SGD(self.backbone.parameters(), lr=exp_dict['lr'], weight_decay=5e-4, momentum=0.9, nesterov=True) self.criterion = CrossEntropyLoss() shuffle_prop = exp_dict.get('shuffle_prop', 0.0) max_sample = -1 self.heuristic = get_heuristic(exp_dict['heuristic'], shuffle_prop=shuffle_prop) self.wrapper = ModelWrapper(self.backbone, criterion=self.criterion) self.wrapper.add_metric( 'cls_report', lambda: ClassificationReport(exp_dict["num_classes"])) self.wrapper.add_metric('accuracy', lambda: Accuracy()) self.loop = ActiveLearningLoop(None, self.wrapper.predict_on_dataset, heuristic=self.heuristic, ndata_to_label=exp_dict['query_size'], batch_size=self.batch_size, iterations=exp_dict['iterations'], use_cuda=True, max_sample=max_sample) self.calib_set = get_dataset('calib', exp_dict['dataset']) self.valid_set = get_dataset('val', exp_dict['dataset']) self.calibrator = DirichletCalibrator( self.wrapper, exp_dict["num_classes"], lr=0.001, reg_factor=exp_dict['reg_factor'], mu=exp_dict['mu']) self.active_dataset = None self.active_dataset_settings = None
def classification_task(tmpdir): model = nn.Sequential(nn.Conv2d(3, 32, 3), nn.ReLU(), nn.Conv2d(32, 64, 3), nn.MaxPool2d(2), nn.AdaptiveAvgPool2d((7, 7)), Flatten(), nn.Linear(7 * 7 * 64, 128), Dropout(), nn.Linear(128, 10) ) model = ModelWrapper(model, nn.CrossEntropyLoss()) test = SimpleDataset() return model, test
def __init__(self, wrapper: ModelWrapper, num_classes: int, lr: float, reg_factor: float, mu: float = None): self.num_classes = num_classes self.criterion = nn.CrossEntropyLoss() self.lr = lr self.reg_factor = reg_factor self.mu = mu or reg_factor self.dirichlet_linear = nn.Linear(self.num_classes, self.num_classes) self.model = nn.Sequential(wrapper.model, self.dirichlet_linear) self.wrapper = ModelWrapper(self.model, self.criterion) self.wrapper.add_metric("ece", lambda: ECE()) self.wrapper.add_metric("ece", lambda: ECE_PerCLs(num_classes))
def val_on_loader(self, loader, savedir=None): val_data = loader.dataset if self.calibrate: self.calibrator.calibrate(self.calib_set, self.valid_set, batch_size=16, epoch=10, use_cuda=True, double_fit=True) calibrated_model = ModelWrapper(self.calibrator.calibrated_model, None) self.loop.get_probabilities = calibrated_model.predict_on_dataset self.loop.step() self.wrapper.test_on_dataset(val_data, batch_size=self.batch_size, use_cuda=True, average_predictions=20) metrics = self.wrapper.metrics mets = self._format_metrics(metrics, 'test') mets.update({'num_samples': len(self.active_dataset)}) return mets
def main(): args = parse_args() batch_size = args.batch_size use_cuda = torch.cuda.is_available() hyperparams = vars(args) pprint(hyperparams) active_set, test_set = get_datasets(hyperparams["initial_pool"], hyperparams["data_path"]) # We will use the FocalLoss criterion = FocalLoss(gamma=2, alpha=0.25) # Our model is a simple Unet model = smp.Unet( encoder_name="resnext50_32x4d", encoder_depth=5, encoder_weights="imagenet", decoder_use_batchnorm=False, classes=len(pascal_voc_ids), ) # Add a Dropout layerto use MC-Dropout add_dropout(model, classes=len(pascal_voc_ids), activation=None) # This will enable Dropout at test time. model = MCDropoutModule(model) # Put everything on GPU. if use_cuda: model.cuda() # Make an optimizer optimizer = optim.SGD(model.parameters(), lr=hyperparams["lr"], momentum=0.9, weight_decay=5e-4) # Keep a copy of the original weights initial_weights = deepcopy(model.state_dict()) # Add metrics model = ModelWrapper(model, criterion) model.add_metric("cls_report", lambda: ClassificationReport(len(pascal_voc_ids))) # Which heuristic you want to use? # We will use our custom reduction function. heuristic = get_heuristic(hyperparams["heuristic"], reduction=mean_regions) # The ALLoop is in charge of predicting the uncertainty and loop = ActiveLearningLoop( active_set, model.predict_on_dataset_generator, heuristic=heuristic, query_size=hyperparams["query_size"], # Instead of predicting on the entire pool, only a subset is used max_sample=1000, batch_size=batch_size, iterations=hyperparams["iterations"], use_cuda=use_cuda, ) acc = [] for epoch in tqdm(range(args.al_step)): # Following Gal et al. 2016, we reset the weights. model.load_state_dict(initial_weights) # Train 50 epochs before sampling. model.train_on_dataset(active_set, optimizer, batch_size, hyperparams["learning_epoch"], use_cuda) # Validation! model.test_on_dataset(test_set, batch_size, use_cuda) should_continue = loop.step() metrics = model.metrics val_loss = metrics["test_loss"].value logs = { "val": val_loss, "epoch": epoch, "train": metrics["train_loss"].value, "labeled_data": active_set.labelled, "Next Training set size": len(active_set), "cls_report": metrics["test_cls_report"].value, } pprint(logs) acc.append(logs) if not should_continue: break
def main(): args = parse_args() use_cuda = torch.cuda.is_available() torch.backends.cudnn.benchmark = True random.seed(1337) torch.manual_seed(1337) if not use_cuda: print("warning, the experiments would take ages to run on cpu") hyperparams = vars(args) active_set, test_set = get_datasets(hyperparams["initial_pool"]) heuristic = get_heuristic(hyperparams["heuristic"], hyperparams["shuffle_prop"]) criterion = CrossEntropyLoss() model = vgg16(pretrained=False, num_classes=10) weights = load_state_dict_from_url( "https://download.pytorch.org/models/vgg16-397923af.pth") weights = {k: v for k, v in weights.items() if "classifier.6" not in k} model.load_state_dict(weights, strict=False) # change dropout layer to MCDropout model = patch_module(model) if use_cuda: model.cuda() optimizer = optim.SGD(model.parameters(), lr=hyperparams["lr"], momentum=0.9) # Wraps the model into a usable API. model = ModelWrapper(model, criterion) logs = {} logs["epoch"] = 0 # for prediction we use a smaller batchsize # since it is slower active_loop = ActiveLearningLoop( active_set, model.predict_on_dataset, heuristic, hyperparams.get("query_size", 1), batch_size=10, iterations=hyperparams["iterations"], use_cuda=use_cuda, ) # We will reset the weights at each active learning step. init_weights = deepcopy(model.state_dict()) for epoch in tqdm(range(args.epoch)): # Load the initial weights. model.load_state_dict(init_weights) model.train_on_dataset( active_set, optimizer, hyperparams["batch_size"], hyperparams["learning_epoch"], use_cuda, ) # Validation! model.test_on_dataset(test_set, hyperparams["batch_size"], use_cuda) metrics = model.metrics should_continue = active_loop.step() if not should_continue: break val_loss = metrics["test_loss"].value logs = { "val": val_loss, "epoch": epoch, "train": metrics["train_loss"].value, "labeled_data": active_set.labelled, "Next Training set size": len(active_set), } print(logs)
train_ds, pool_specifics={"transform": test_transform}) al_dataset.label_randomly(200) # Start with 200 items labelled. # Creates an MLP to classify MNIST model = nn.Sequential( nn.Flatten(), nn.Linear(784, 512), nn.Dropout(), nn.Linear(512, 512), nn.Dropout(), nn.Linear(512, 10), ) model = patch_module(model) # Set dropout layers for MC-Dropout. if use_cuda: model = model.cuda() wrapper = ModelWrapper(model=model, criterion=nn.CrossEntropyLoss()) optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=5e-4) # We will use BALD as our heuristic as it is a great tradeoff between performance and efficiency. bald = BALD() # Setup our active learning loop for our experiments al_loop = ActiveLearningLoop( dataset=al_dataset, get_probabilities=wrapper.predict_on_dataset, heuristic=bald, query_size=100, # We will label 100 examples per step. # KWARGS for predict_on_dataset iterations=20, # 20 sampling for MC-Dropout
# You might need to add the path to the list of python system paths. al_dataset = ActiveLearningDataset(FeatureDataset("./data/CASP.csv")) test_ds = FeatureDataset("./data/CASP.csv", split="test") al_dataset.label_randomly(1000) # Start with 1000 items labelled. # Creates an MLP to classify MNIST model = nn.Sequential(nn.Flatten(), nn.Linear(9, 16), nn.Dropout(), nn.Linear(16, 8), nn.ReLU(), nn.Linear(8, 1)) model = patch_module(model) # Set dropout layers for MC-Dropout. model.apply(weight_init_normal) if use_cuda: model = model.cuda() wrapper = ModelWrapper(model=model, criterion=nn.L1Loss()) optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=5e-4) # We will use Variance as our heuristic for regression problems. variance = Variance() # Setup our active learning loop for our experiments al_loop = ActiveLearningLoop( dataset=al_dataset, get_probabilities=wrapper.predict_on_dataset, heuristic=variance, query_size=250, # We will label 20 examples per step. # KWARGS for predict_on_dataset