import torch as T import torch.nn as nn from torch.utils.data import DataLoader from data_loader import ImageFolder720p from utils import save_imgs import matplotlib.pylab as plt from bagoftools.namespace import Namespace from bagoftools.logger import Logger from models.cae_32x32x32_zero_pad_bin import CAE ROOT_EXP_DIR = Path(__file__).resolve().parents[1] / "experiments" logger = Logger(__name__, colorize=True) def test(cfg: Namespace) -> None: assert cfg.checkpoint not in [None, ""] assert cfg.device == "cpu" or (cfg.device == "cuda" and T.cuda.is_available()) exp_dir = ROOT_EXP_DIR / cfg.exp_name os.makedirs(exp_dir / "out", exist_ok=True) cfg.to_file(exp_dir / "test_config.json") logger.info(f"[exp dir={exp_dir}]") model = CAE() model.load_state_dict(T.load(cfg.checkpoint)) model.eval() if cfg.device == "cuda":
from tensorboardX import SummaryWriter from torch.autograd import Variable from torch.utils.data import DataLoader from data_loader import ImageFolder96p from utils import get_config, get_args, dump_cfg from utils import save_imgs from bagoftools.logger import Logger # models sys.path.append( os.path.join(os.path.dirname(os.path.realpath(__file__)), "../models")) from cae_96x16x16_test import CAE logger = Logger(name='train', colorize=True) def prologue(cfg: Namespace, *varargs) -> SummaryWriter: # sanity checks assert cfg.device == "cpu" or (cfg.device == "cuda" and T.cuda.is_available()) # dirs base_dir = f"../experiments/{cfg.exp_name}" os.makedirs(f"{base_dir}/out", exist_ok=True) os.makedirs(f"{base_dir}/chkpt", exist_ok=True) os.makedirs(f"{base_dir}/logs", exist_ok=True) dump_cfg(f"{base_dir}/train_config.txt", vars(cfg))