Esempio n. 1
0
def start(_socketio):
    global co
    global socketio
    global model_illum
    global model_humid
    global model_temp
    global data_illum
    global data_humid
    global data_temp
    socketio = _socketio
    model_illum = banpei.SST(w=30)
    model_humid = banpei.SST(w=30)
    model_temp = banpei.SST(w=30)
    data_illum = []
    data_humid = []
    data_temp = []

    configfile = open('./config.json', 'r')
    global config
    config = json.load(configfile)

    # setup mongodb connection
    client = MongoClient(config['mongo']['ip'], config['mongo']['port'])
    db = client.sensordb
    co = db.sensordata

    for i in co.find({
            'topic': 'sensor/04016777/Illumination'
    }).sort('timestamp').limit(1):
        data_illum.insert(0, i['value'])
        print(i['value'])

    for i in co.find({
            'topic': 'sensor/04016897/Humidity'
    }).sort('timestamp').limit(1):
        data_humid.insert(0, i['value'])
        print(i['value'])

    for i in co.find({
            'topic': 'sensor/04016897/Temperature'
    }).sort('timestamp').limit(1):
        data_temp.insert(0, i['value'])
        print(i['value'])

    # setup mqtt connection
    th = threading.Thread(target=mqtt_connect, name='th', args=())
    th.setDaemon(True)
    th.start()
Esempio n. 2
0
def start(_socketio):
    global socketio
    global p
    global stream
    global model
    global rmsArray

    configfile = open('./config.json', 'r')
    config = json.load(configfile)
    global config_audio
    config_audio = config['audio']

    # setup mongodb connection
    global co
    client = MongoClient(config['mongo']['ip'], config['mongo']['port'])
    db = client.sensordb
    co = db.sensordata

    socketio = _socketio
    p = pyaudio.PyAudio()
    model = banpei.SST(w=30)
    rmsArray = []
    th = threading.Thread(target=getstream, name='th', args=())
    th.setDaemon(True)
    th.start()
Esempio n. 3
0
def anomaly_detection(raw_data,fname,n_feat=feat):
    vanilla_peaks={} # Using SST getting just index
    for ind in range(n_feat):
        temp_data=raw_data[:,ind] # Going per feature/column

        model=banpei.SST(w=50)
        anomaly=model.detect(temp_data,is_lanczos=True) # Changepoint scores using SST
        peak=sig.find_peaks(anomaly) # Data peaks- naive

        vanilla_peaks[ind]=[peak[0],anomaly] # As dict --> Index values, actual scores
        print("\t\t\t Anomaly detection Index {} done.".format(ind))

    vanilla_fname=fname+'_vanillasst.csv'

    with open(vanilla_fname,'w') as f:
        writer=csv.writer(f)
        for k,v in vanilla_peaks.items():
            writer.writerow([k,v])
    f.close()
    print("\t\t Saved anomaly detection")
Esempio n. 4
0
def analyst(args):
    ALL_CPU_ID = -2
    ALL_SYSTEM_NAME = 'all'
    data = pd.read_csv(args.path)

    if args.cpu_id != ALL_CPU_ID:
        data = data[data['cpu_id'] == args.cpu_id]
    if args.system_name != ALL_SYSTEM_NAME:
        data = data[data['system_name'] == args.system_name]

    y = data[args.target]

    model = banpei.SST(w=50)
    results = model.detect(y, is_lanczos=True)
    start = args.start
    length = args.length
    total_length = len(y)

    while True:

        end = start + length
        end = end if end < total_length else total_length
        origin = y.iloc[start:end]
        result = results[start:end]
        x = range(start, end)

        plt.subplot(211)
        plt.plot(x, origin)
        plt.subplot(212)
        plt.plot(x, result)
        name = args.system_name + '_' + str(
            args.cpu_id) + '_' + str(start) + '_' + str(end) + '.png'
        plt.savefig('analyst/' + name)
        plt.close()

        start = end
        if end == total_length:
            break
    -83, -82, -81, -78, -77, -75, -73, -70, -68, -65, -61, -59, -55, -52, -48,
    -45, -41, -37, -33, -29, -25, -21, -16, -12, -8, -3, 0, 4, 8, 13, 17, 21,
    25, 30, 33, 38, 41, 45, 50, 53, 56, 60, 63, 66, 69, 71, 74, 76, 78, 80, 81,
    84, 85, 86, 87, 87, 89, 89, 88, 89, 89, 88, 87, 86, 85, 84, 82, 81, 78, 76,
    74, 71, 69, 66, 63, 60, 57, 53, 51, 46, 43, 39, 35, 30, 26, 23, 18, 14, 10,
    6, 0, -2, -6, -11, -15, -19, -24, -28, -32, -36, -40, -43, -47, -51, -54,
    -58, -61, -64, -67, -69, -72, -74, -76, -79, -81, -82, -83, -84, -86, -86,
    -87, -87, -87, -87, -87, -86, -85, -84, -84, -82, -81, -79, -76, -75, -72,
    -70, -67, -64, -61, -59, -55, -52, -48, -45, -41, -37, -33, -29, -24, -21,
    -16, -12, -7, -3, 0, 4, 8, 12, 17, 22, 26, 30, 33, 38, 42, 45, 49, 53, 56,
    59, 62, 65, 68, 71, 73, 76, 79, 80, 81, 84, 84, 86, 87, 88, 88, 89, 89, 89,
    89, 88, 87, 86, 85, 84, 82, 80, 78, 76, 74, 71, 69, 67, 63, 60, 58, 53, 50,
    46, 43, 38, 35, 30, 26, 22, 18, 14, 10, 5, 1, -2, -6, -11, -15, -19, -24,
    -28, -32, -36, -40, -44, -47, -51, -54, -58, -61, -64, -67, -69, -72, -75,
    -77, -78, -80, -82, -84, -84, -85, -86, -86, -87, -87, -87, -86, -86, -85,
    -84, -84, -82, -80, -79, -77, -75, -73, -70, -67, -65, -61, -59, -55, -52,
    -48, -45, -41, -38, -33, -29, -25, -21, -17, -12, -8, -4, 0, 4, 8, 13, 18,
    22, 25, 30, 34, 38, 42, 45, 49, 53, 55, 60, 62, 66, 68, 71, 74, 76, 78, 81,
    82
])

pylab.subplot(211)
fig = pylab.plot(data, color="green", lw=2)

model = banpei.SST(w=128)
results = model.detect(data)
print('Find the Change Point Index is %d' %
      (results.tolist().index(max(results))))

pylab.subplot(212)
fig = pylab.plot(results, color="red", lw=2)
Esempio n. 6
0
def use_sst(time_series):
    #
    # OFFSET = 0
    # WIN = 2
    # model = banpei.SST(w=10)
    #
    # # #timeseries是性能指标序列
    # # time_series = []
    # # for row in time_series_set:
    # #     time_series.append(row[1])
    # # # time是性能指标对应的全时间序列
    # # time = []
    # # for row in time_series_set:
    # #     time.append(row[0])
    # # print("time", time_series)
    # score = model.detect(time_series)
    # #print(score)
    # lst = score.tolist()
    #
    # #print("score", lst)
    #
    # iter = len(lst) - 1
    # while iter > (OFFSET - 1):
    #     lst[iter] = lst[iter - OFFSET]
    #     iter -= 1
    # for k in range(0, 32):
    #     lst[k] = 0.0
    #
    #
    #
    #
    # # 用t-score给sst结果判断正负
    # # for i in range(2, (len(lst) - 2)):
    # #     front = time_series[(i - WIN): i: 1]
    # #     rear = time_series[i: (i + WIN): 1]
    # #     t_score = t_test(front, rear)
    # #     if t_score < 0:
    # #         lst[i] = -lst[i]
    #
    #
    #
    # # 极值
    # # x = np.array(lst)
    # # avgLst = average_num(lst)
    # # npMaxList = argrelextrema(x, np.greater)[0]
    # # maxlst = npMaxList.tolist()
    # # maxList = []
    # # for max in maxlst:
    # #     if lst[max] > avgLst*5:
    # #         maxList.append(max)
    # # print(maxList)
    # # tScoreSeries = []
    # # for item in maxList:
    # #     print(time[item])
    # #     front = time_series[(item - WIN):item:1]
    # #     rear = time_series[item:(item + WIN):1]
    # #     t_score = t_test(front, rear, WIN)
    # #     tScoreSeries.append([item, t_score])
    # # print(tScoreSeries)
    # #
    # # temp = tScoreSeries[0]
    # # tempFront = 0
    # # tempRear = 0
    # # for item in tScoreSeries[1:]:
    # #     if temp[-1] * item[-1] < 0:
    # #         if (temp[-1] > 0) and (item[-1] < 0):
    # #             continue
    # #         else:
    # #             if (temp[-1] < 0) and (item[-1] > 0):
    # #                 tempRear = (temp[0] + item[0]) / 2
    # #                 for i in range(tempFront, tempRear):
    # #                     sst_list[i][-1] = - sst_list[i][-1]
    # #                 tempFront = tempRear
    # #                 temp = item
    # #     else:
    # #         continue
    # #
    # # lstSeries = []
    # # for item in sst_list:
    # #     lstSeries.append(item[-1])
    # # print(lstSeries)
    #
    # # sst_list = []
    # # for i in range(len(time)):
    # #     row = [time[i], lst[i]]
    # #     sst_list.append(row)

    model = banpei.SST(w=50)
    results = model.detect(time_series)

    return results
Esempio n. 7
0
import pandas as pd
import banpei
import numpy as np

pathToProcess = "/opt/sonarg/sonarw/agg_out/"
fileToProcess = "TS_Query_10.1.csv"

raw_data = pd.read_csv(pathToProcess + 'DailyExtract_' + fileToProcess)
data = raw_data['Records Affected']
print('Nbr of recs to Process : ', len(data))
model = banpei.SST(w=30)

results = model.detect(data, is_lanczos=True)

anomalies = np.array([data, results])

print(anomalies.shape)

rAnomalies = np.reshape(anomalies, (len(results), 2))

print(rAnomalies.shape)
print(rAnomalies)
# print(type(results),len(results))
# print(results)

# numpy.savetxt(pathToProcess + 'Banpei_' + fileToProcess, results)
Esempio n. 8
0
def load_sst_model(w, m=2, k=None, L=None):
    return banpei.SST(w, m, k, L)
Esempio n. 9
0
def use_sst(time_series_set):

    OFFSET = 28
    WIN = 2
    model = banpei.SST(w=50)

    #timeseries是性能指标序列
    time_series = []
    for row in time_series_set:
        time_series.append(row[1])
    # time是性能指标对应的全时间序列
    time = []
    for row in time_series_set:
        time.append(row[0])
    # print("time", time_series)
    score = model.detect(time_series)
    #print(score)
    lst = score.tolist()

    #print("score", lst)

    iter = len(lst) - 1
    while iter > (OFFSET - 1):
        lst[iter] = lst[iter - OFFSET]
        iter -= 1
    for k in range(0, 32):
        lst[k] = 0.0

    # 用t-score给sst结果判断正负
    for i in range(2, (len(lst) - 2)):
        front = time_series[(i - WIN):i:1]
        rear = time_series[i:(i + WIN):1]
        t_score = t_test(front, rear)
        if t_score < 0:
            lst[i] = -lst[i]

    # 极值
    # x = np.array(lst)
    # avgLst = average_num(lst)
    # npMaxList = argrelextrema(x, np.greater)[0]
    # maxlst = npMaxList.tolist()
    # maxList = []
    # for max in maxlst:
    #     if lst[max] > avgLst*5:
    #         maxList.append(max)
    # print(maxList)
    # tScoreSeries = []
    # for item in maxList:
    #     print(time[item])
    #     front = time_series[(item - WIN):item:1]
    #     rear = time_series[item:(item + WIN):1]
    #     t_score = t_test(front, rear, WIN)
    #     tScoreSeries.append([item, t_score])
    # print(tScoreSeries)
    #
    # temp = tScoreSeries[0]
    # tempFront = 0
    # tempRear = 0
    # for item in tScoreSeries[1:]:
    #     if temp[-1] * item[-1] < 0:
    #         if (temp[-1] > 0) and (item[-1] < 0):
    #             continue
    #         else:
    #             if (temp[-1] < 0) and (item[-1] > 0):
    #                 tempRear = (temp[0] + item[0]) / 2
    #                 for i in range(tempFront, tempRear):
    #                     sst_list[i][-1] = - sst_list[i][-1]
    #                 tempFront = tempRear
    #                 temp = item
    #     else:
    #         continue
    #
    # lstSeries = []
    # for item in sst_list:
    #     lstSeries.append(item[-1])
    # print(lstSeries)

    sst_list = []
    for i in range(len(time)):
        row = [time[i], lst[i]]
        sst_list.append(row)

    return sst_list