Esempio n. 1
0
def get_bpm(image, pipeline_context):
    bpm_filename = dbs.get_bpm(image.telescope_id, image.ccdsum,
                               db_address=pipeline_context.db_address)
    if bpm_filename is None:
        bpm = None
        image.header['L1IDMASK'] = ('', 'Id. of mask file used')
    else:
        bpm_hdu = fits_utils.open_fits_file(bpm_filename)
        bpm_extensions = fits_utils.get_extensions_by_name(bpm_hdu, 'BPM')
        if len(bpm_extensions) > 1:
            extension_shape = bpm_extensions[0].data.shape
            bpm_shape = (len(bpm_extensions), extension_shape[0], extension_shape[1])
            bpm = np.zeros(bpm_shape, dtype=np.uint8)
            for i, extension in enumerate(bpm_extensions):
                bpm[i, :, :] = extension.data[:, :]
        elif len(bpm_extensions) == 1:
            bpm = np.array(bpm_extensions[0].data, dtype=np.uint8)
        else:
            bpm = np.array(bpm_hdu[0].data, dtype=np.uint8)
        if not bpm_has_valid_size(bpm, image):
            tags = logs.image_config_to_tags(image, None)
            logs.add_tag(tags, 'filename', image.filename)
            logger.error('BPM shape mismatch', extra=tags)
            err_msg = 'BPM shape mismatch for {filename} ' \
                      '{site}/{instrument}'.format(filename=image.filename, site=image.site,
                                                   instrument=image.instrument)
            raise ValueError(err_msg)
        image.header['L1IDMASK'] = (os.path.basename(bpm_filename), 'Id. of mask file used')

    return bpm
Esempio n. 2
0
def test_get_sci_extensions():
    hdulist = [fits.PrimaryHDU(header=fits.Header({'test': 'test'}))]

    input_data = []
    for i in range(4):
        data = np.random.uniform(0, 1,
                                 size=(101, 101)).astype(dtype=np.float32)
        input_data.append(data)
        # Build the fits header manually because of a bug in the latest stable version of astropy
        # This should be
        # header = fits.Header({'EXTNAME': 'SCI', 'EXTVER': i + 1})
        header = fits.Header()
        header['EXTNAME'] = 'SCI'
        header['EXTVER'] = i + 1
        hdulist.append(fits.ImageHDU(data=data, header=header))

    bpm_header = fits.Header()
    bpm_header['EXTNAME'] = 'BPM'
    bpm_hdu = fits.ImageHDU(data=np.zeros((101, 101), dtype=np.uint8),
                            header=bpm_header)
    hdulist.append(bpm_hdu)

    hdulist = fits.HDUList(hdulist)

    sci_extensions = fits_utils.get_extensions_by_name(hdulist, 'SCI')

    assert len(sci_extensions) == 4
    for i in range(4):
        np.testing.assert_allclose(sci_extensions[i].data,
                                   input_data[i],
                                   atol=1e-5)
Esempio n. 3
0
def test_get_sci_extensions():
    hdulist = [fits.PrimaryHDU(header=fits.Header({'test': 'test'}))]

    input_data = []
    for i in range(4):
        data = np.random.uniform(0, 1, size=(101, 101)).astype(dtype=np.float32)
        input_data.append(data)
        # Build the fits header manually because of a bug in the latest stable version of astropy
        # This should be
        # header = fits.Header({'EXTNAME': 'SCI', 'EXTVER': i + 1})
        header = fits.Header()
        header['EXTNAME'] = 'SCI'
        header['EXTVER'] = i + 1
        hdulist.append(fits.ImageHDU(data=data, header=header))

    bpm_header = fits.Header()
    bpm_header['EXTNAME'] = 'BPM'
    bpm_hdu = fits.ImageHDU(data=np.zeros((101, 101), dtype=np.uint8), header=bpm_header)
    hdulist.append(bpm_hdu)

    hdulist = fits.HDUList(hdulist)

    sci_extensions = fits_utils.get_extensions_by_name(hdulist, 'SCI')

    assert len(sci_extensions) == 4
    for i in range(4):
        np.testing.assert_allclose(sci_extensions[i].data, input_data[i], atol=1e-5)
Esempio n. 4
0
def get_bpm(image, pipeline_context):
    bpm_filename = dbs.get_bpm(image.telescope_id,
                               image.ccdsum,
                               db_address=pipeline_context.db_address)
    if bpm_filename is None:
        bpm = None
        image.header['L1IDMASK'] = ('', 'Id. of mask file used')
    else:
        bpm_hdu = fits_utils.open_fits_file(bpm_filename)
        bpm_extensions = fits_utils.get_extensions_by_name(bpm_hdu, 'BPM')
        if len(bpm_extensions) > 1:
            extension_shape = bpm_extensions[0].data.shape
            bpm_shape = (len(bpm_extensions), extension_shape[0],
                         extension_shape[1])
            bpm = np.zeros(bpm_shape, dtype=np.uint8)
            for i, extension in enumerate(bpm_extensions):
                bpm[i, :, :] = extension.data[:, :]
        elif len(bpm_extensions) == 1:
            bpm = np.array(bpm_extensions[0].data, dtype=np.uint8)
        else:
            bpm = np.array(bpm_hdu[0].data, dtype=np.uint8)
        if not bpm_has_valid_size(bpm, image):
            tags = logs.image_config_to_tags(image, None)
            logs.add_tag(tags, 'filename', image.filename)
            logger.error('BPM shape mismatch', extra=tags)
            err_msg = 'BPM shape mismatch for {filename} ' \
                      '{site}/{instrument}'.format(filename=image.filename, site=image.site,
                                                   instrument=image.instrument)
            raise ValueError(err_msg)
        image.header['L1IDMASK'] = (os.path.basename(bpm_filename),
                                    'Id. of mask file used')

    return bpm
Esempio n. 5
0
File: bpm.py Progetto: baulml/banzai
def load_bpm(bpm_filename):
    bpm_hdu = fits_utils.open_fits_file(bpm_filename)
    bpm_extensions = fits_utils.get_extensions_by_name(bpm_hdu, 'BPM')
    # Filter out BPM extensions without data
    bpm_extensions = [
        extension for extension in bpm_extensions if extension.data is not None
    ]
    if len(bpm_extensions) > 1:
        extension_shape = bpm_extensions[0].data.shape
        bpm_shape = (len(bpm_extensions), extension_shape[0],
                     extension_shape[1])
        bpm = np.zeros(bpm_shape, dtype=np.uint8)
        for i, extension in enumerate(bpm_extensions):
            bpm[i, :, :] = extension.data[:, :]
    elif len(bpm_extensions) == 1:
        bpm = np.array(bpm_extensions[0].data, dtype=np.uint8)
    else:
        bpm = np.array(bpm_hdu[0].data, dtype=np.uint8)
    return bpm